GEOLOGICAL SURVEY OF IRAN

Iran Unique Geology and Mineral Potentials Opportunities

Indicators

Area: 1,648,195 square kilometers (the second-largest nation in the Middle East and the 18th largest in the world)

 Population: 80 million (Second largest population, after Egypt, in the Middle East and North Africa, 19th in the world)

- GDP (ppp): 1.334 trillion US\$ (2014) (19th in the world)
- **GDP** per capita (ppp): 17100 \$ (2014)
- GDP growth rate 2014: 3%
- Age below 54 years old: 88%
- Literacy: 87%
- Labor force: 28.4 million
- Official language is Farsi (Persian), Turkish , Kurdish and Arabic are spoken as well
- Official exchange rate: 26000 rls vs. 1USD\$

History of Mining

Geology of Iran

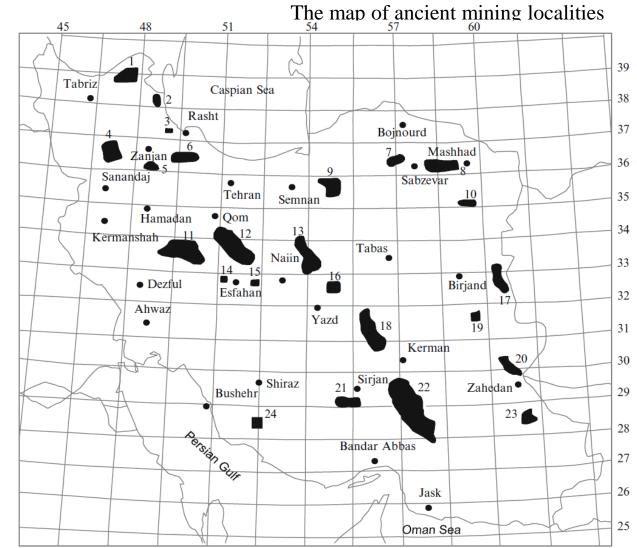
Metallogenic and Mining Provinces, Belts and Zones of Iran

Metallogenic and Mineralization Phases of Iran

Metallogeny and Distribution of Minerals

The Position of Iranian Mining Industry in the World

Investment Opportunities

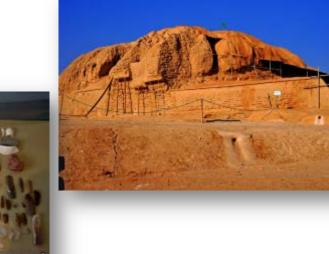

History of Mining

Iran has been the pioneer in mining exploration and techniques for several millennia.

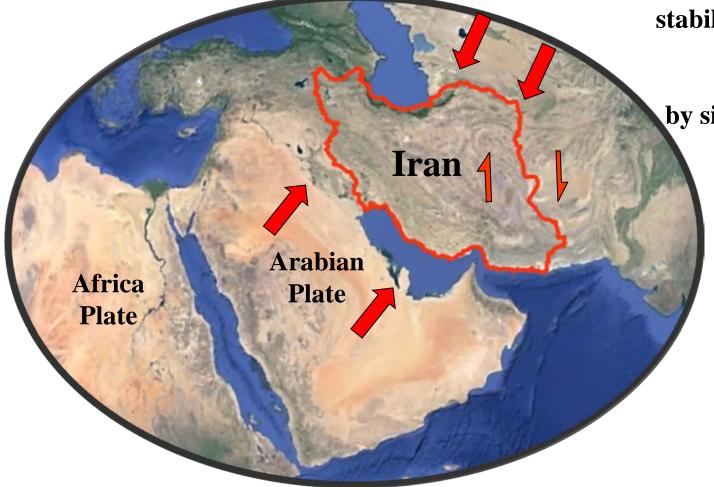
- High potential of mineral deposits and their diversity
- absence of dense vegetation cover
- There are a few known metallic deposits in Iran that do not have the footprint of the ancient activities
- Numerous mining localities, tools, smelters, and miners' residence have existed since the fourth millennium B.C.
- The evidence of copper utilization in Iran (at Tal-e-Eblis) dates back to around 9,000 B.C.

1 Ahar area (Cu, Au, Fe), 2 Ardabil area (Cu), 3 Masooleh area (Fe), 4 Takab area (Shiz) (Au, As, Ag), 5 Zanjan area (Fe, Au), 6 Tarom area (Cu, Au, Pb), 7 Abbas Abad area (Cu), 8 Neyshabour area (Tr, Au), 9 West of Damghan (Au, Cu, Tr), 10 Torbat areas (Au, As), 11 Ahangaran – Shamsabad (north area of Lorestan) (Pb, Au, Ag, Fe, Sn), 12 Qom – Kashan area (Cu, Au, Fe), 13 Anarak area (Cu, Pb, Ag, Au), 14 Daran – Najaf Abad (Pb, Zn), 15 Esfahan area (Zn, Pb), 16 Zarin area (Ardakan) (Au), 17 Ahangaran area (Cu, Fe, Pb, Ag), 18 Bafq – Kuh Banan (Zn, Pb), 19 Ghaleh Zari area (Cu), 20 Lar – Asagi area (Cu, Au), 21 Neyriz area (Fe), 22 Kerman area (Cu, Au, Tr), 23 Kharestan area (Pb, Ag, Au), 24 Kuh Sormeh area (Pb, Zn)

• The knowledge and talent of primeval Iranians

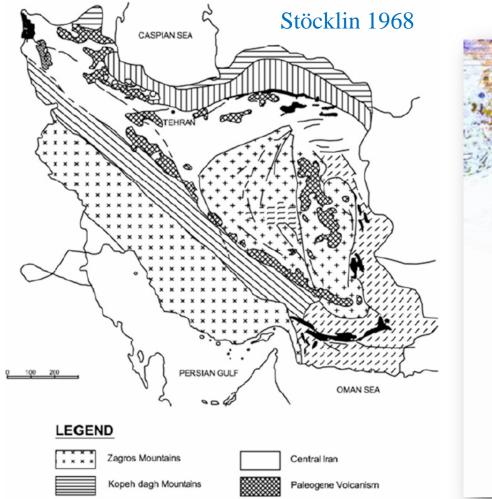

Locality	Type of mine	Locality	Type of mine
Ahangaran	Copper, iron, lead, and mercury	Abbas Abad	Copper
Ahar	Gold, copper, and iron	Anarak	Copper, lead, mercury, and gold
Ardebil	Copper	Bafq–Kuh Banan	Copper, gold, and iron
Damghan	Gold, copper, and turquoise	Daran–Najaf Abad	Lead-zinc
Esfahan	Lead-zinc	Kharestan	Lead, mercury, and gold
Kerman	Copper, gold, and turquoise	Kuh Sorme	Lead-zinc
Lar-Asaji	Copper and gold	Masoule	Iron
Neiriez	Iron	Neishabour	Turquoise and gold
Qal'e Zari	Copper	Qom–Kashan	Copper, gold, and iron
Shams Abad (Lorestan)	Lead, gold, silver, iron, and tin	Tarom	Copper, gold, and lead
Takab	Gold, arsenic, and mercury	Torbat	Gold and arsenic
Zanjan	Iron and gold	Zarrin	Gold

Mining provinces in ancient Iran



The relationship between the names of mining products and that of geographical locations

	Part of the name	Localities of mines
	Zar (gold)	Zarin, Zarshouran, Kuh-e Zar, Zargaran, Zarvand
	Mes (copper)	Talmesi, Meskani, Mejdar (Mesdar) Kuh-e Mes, Chahmesi, Dare Mes, Sang-e Mes, Meskan
1	Zangar (copper)	Zangarlou, Zangalou
	Sorme (lead-zinc)	Kuh Sorme, Khane Sorme
	Noqre (silver)	Dare Noqre (near Golpayegan), Noqre Kamar, Kuh-e Zardan Noqrei (Baluchestan),
	Ahan or Asen (iron)	Ahangaran (Malayer), Kuh-e Ahangaran (Shams Abad), Ahangaran (Qa'en) Asen Abad (Marivan)
	Zaj or Zaglik (alunite)	Zajkan (Tarom), Dare Zaglik (Ahar)
	Boraq (borax)	Boraq (Taft)
	Gel (clay)	Gelkan, Gelou
	Naft or Tashi (oil or gas)	Naftoon (Masjed Soleyman), Tape Tashi (Ramhormoz)

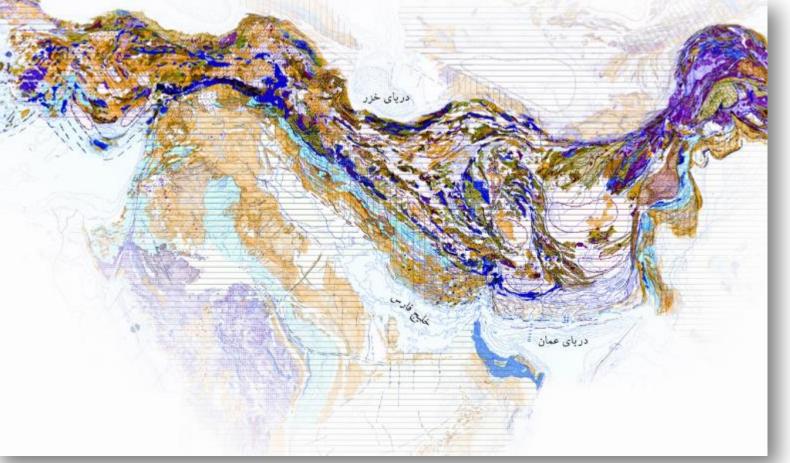


stabilization of the basement in Iran occurred in the Late Proterozoic to Early Cambrian This is supported by similar Gondwanic features in both the Iranian and the Arabian basements.

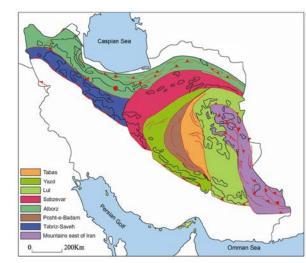
> The oldest rocks in Iran, based on the radiometric ages, are as old as 900 million years. This was the time when Doran-type granites and Gharehdash series formed.

The cratonization happened transitionally from Africa toward Iran as evident from the age of the basements; Central Africa has a basement of Late Archean–Early Proterozoic while in Northern Africa, there is no Archean basement; besides, the extent of Precambrian domains reduces from Central Africa toward north. Some authors believe that cratonization of Iran has been due to Baikalian, Asynitic, or Pan-African orogenies. The systematic geological studies in Iran started in the late 1960s with the establishment of the Geological Survey of Iran Unique record of stratigraphy, magmatic activities, metamorphism,

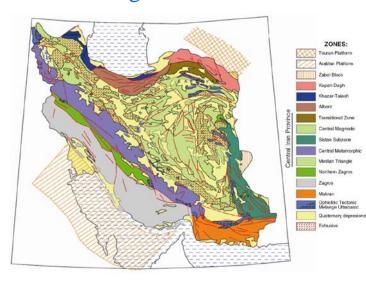
orogenic events, tectonics and overall geological style.

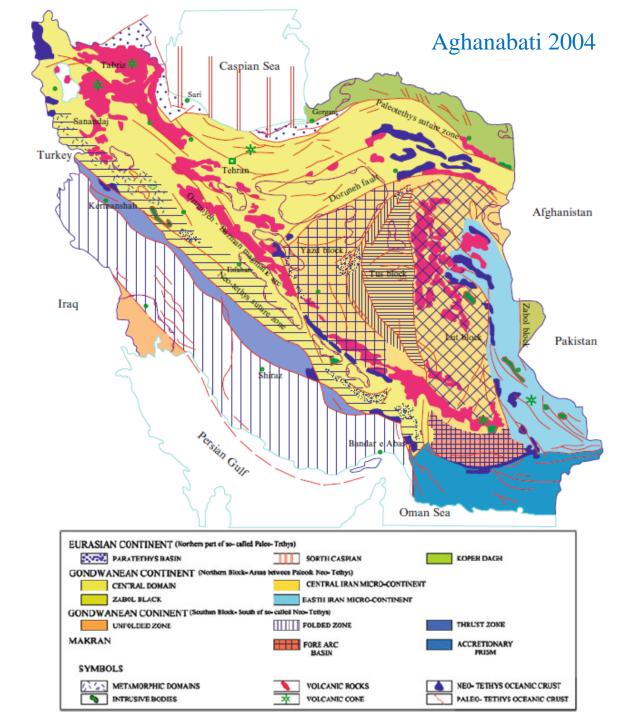

Makran and East Iran Zone

Iborz Mountains

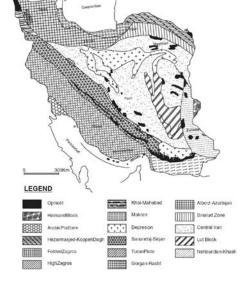

Sanandaj - Sirjan Zone

Ophiolitic Complex

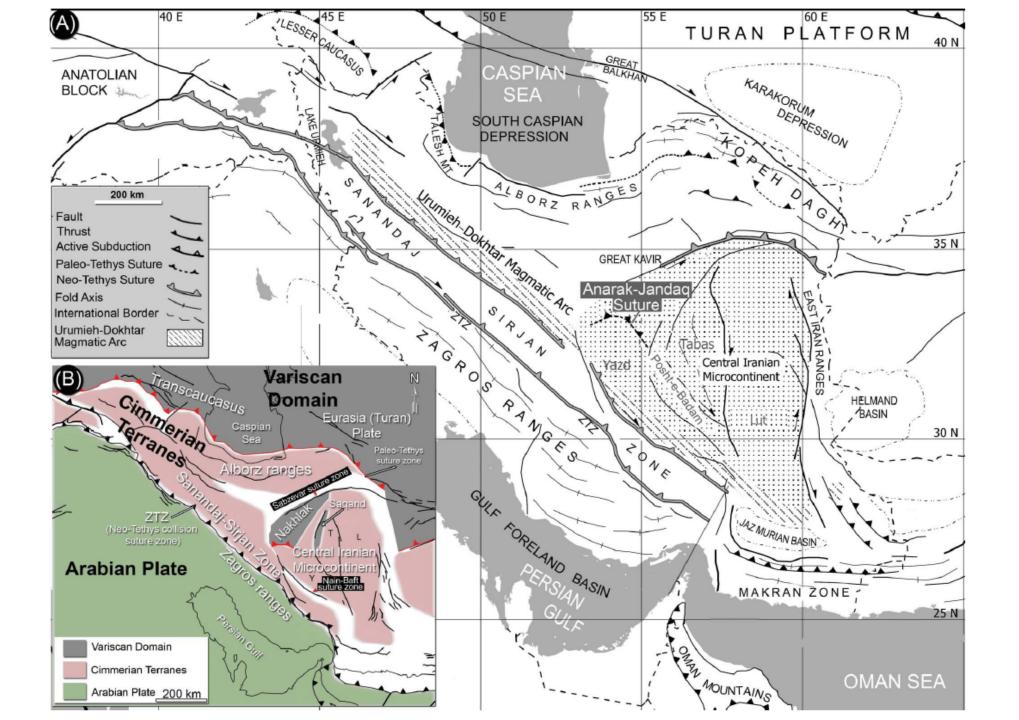

Lut Block

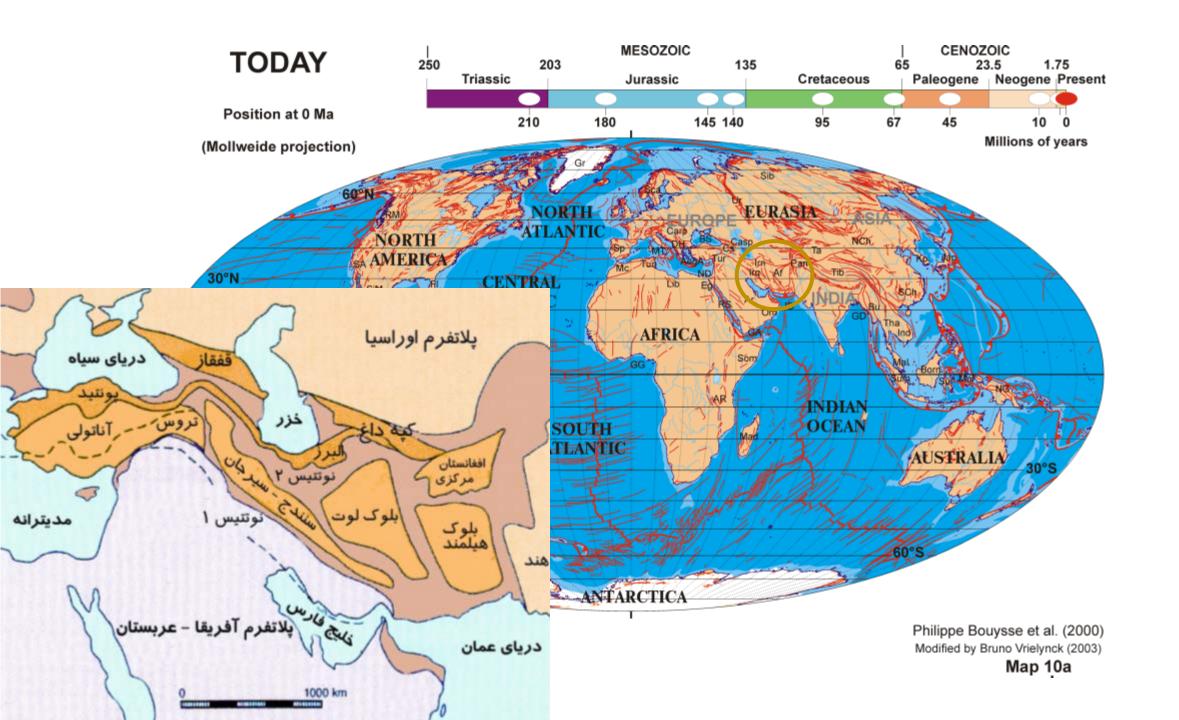


Alavi 1991

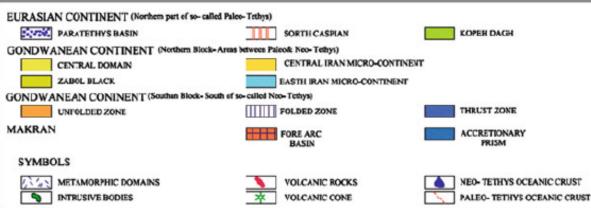


Nogole-Sadat 1993





Nabavi 1976


Role	Geographic situation	Closure	Opening	Tethys Ocean		
Separated Eurasia from Gondwana	North of Kopet Dagh (Out of IRAN)	Late Paleozoic	Precambrian -Lower Paleozoic	First Paleo-Tethys	Paleo-Tethys	
Separated Northern Gondwana (Kopet Dagh from Iran plateau)	South of Kopet Dagh	Late Triassic	Late Paleozoic	Second Paleo-Tethys	Paleo-	/s
Separated Iran plateau from Zagros	Zagros Suture Zone	Late Cretaceous	Late Triassic	First Neo-Tethys	thys	Tethys
 Derivation in Iran plateau Separation of Lut block from Afghan Derivation in Iran plateau 	Round of Micro-plateEastern IranMakran	 Late Cretaceous Middle Miocene Active Now 	Early Jurassic- Cenomanian stage	Second Neo-Tethys	Neo-Tethys	



Kopet Dagh

From Middle Jurassic, it was covered with a vast continental shelf sea. In this period of time and due to transgression as well as rapid Turkey subsidence basin, the western part became deeper. In this basin, a thick sequence of continuous marine and continental sediments was deposited (about 10 km). No major sedimentary gap or volcanic activities during Jurassic to Oligocene have ever been reported.

Central Iran

Located as a triangle in the middle of Iran, Central Iran is one of the most important and complicated structural zones in Iran. Here, rocks of all ages, from the **Precambrian to the Quaternary,** and several episodes of orogeny, metamorphism, and magmatism can be recognized. There is not a consensus regarding the boundaries of Central Iran.

SORTH CASPIAN

FOLDED ZONE

DLCANIC ROCKS

OLCANIC CONE

FORE ARC BASIN

ASTH IRAN MICRO-CONTINENT

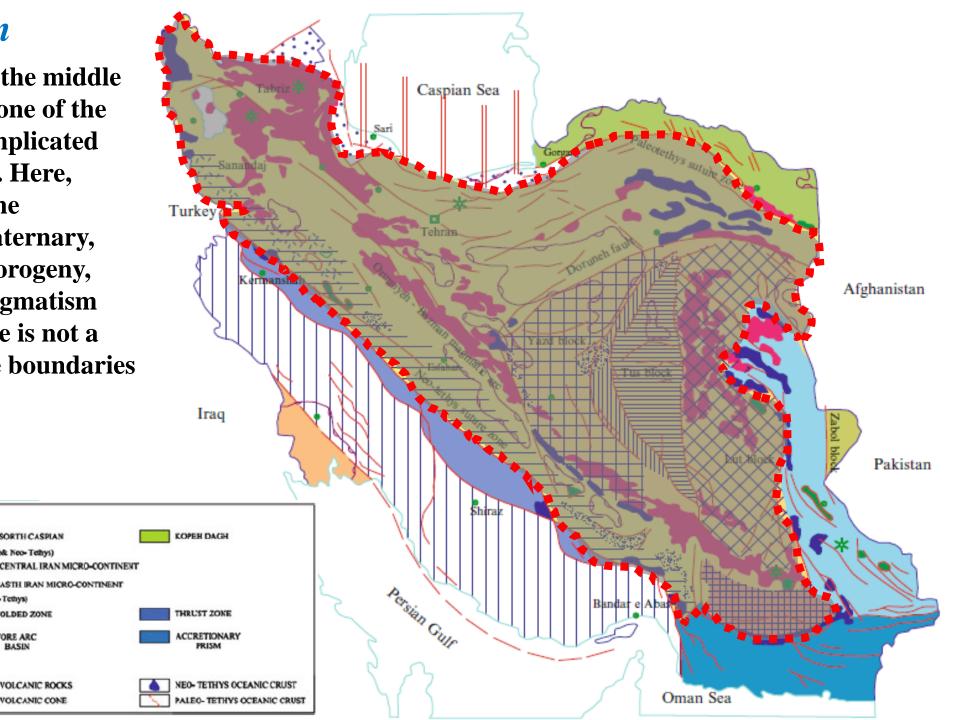
EURASIAN CONTINENT (Northern part of so- called Paleo- Tethys)

GONDWANEAN CONTINENT (Northern Block-Arras between Paleod: Neo-Tethys)

GONDWANEAN CONINENT (Southan Block- South of so-called Neo-Tethys

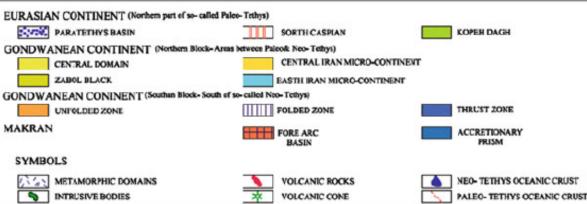
PARATETHYS BASIN

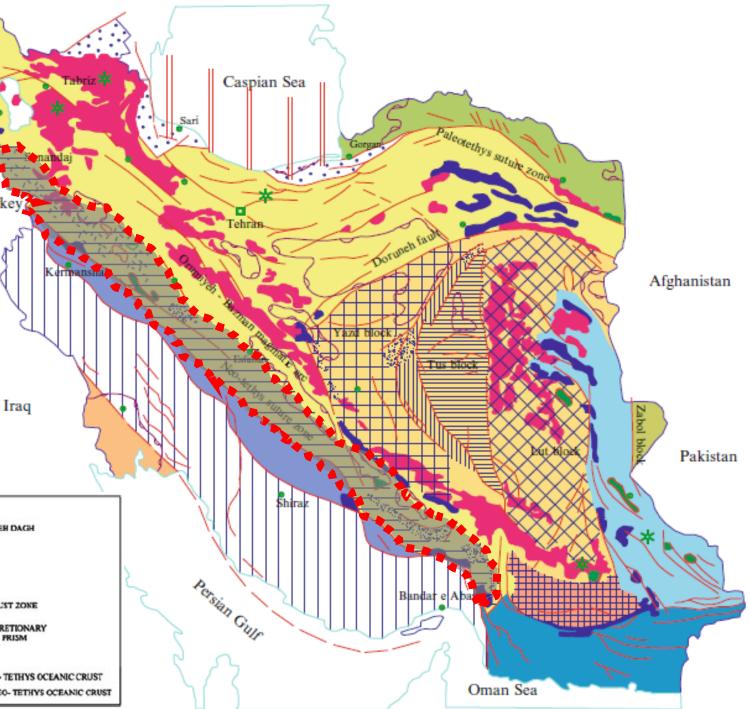
CENTRAL DOMAIN ZABOL BLACK


UNFOLDED ZONE

INTRUSIVE BODIES

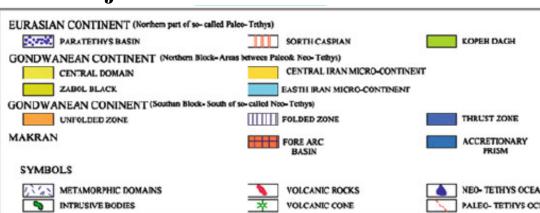
TAMORPHIC DOMAINS

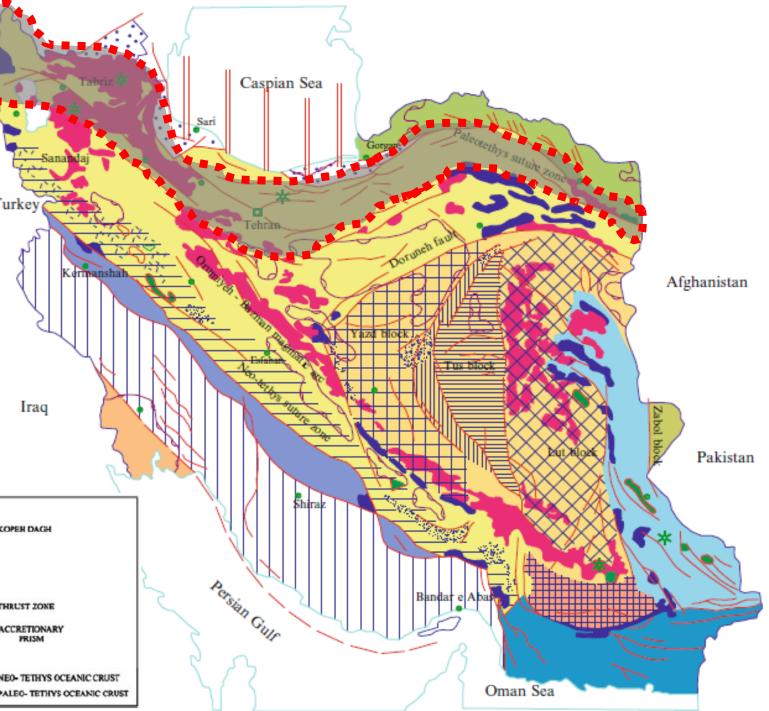

MAKRAN


SYMBOLS

Sanandaj–Sirjan

This zone is located to the southsouthwest of Central Iran and the northeastern edge of Zagros range. In north and northeast, this zone is separated from Central Iran by Turke depressions like Lake Orumiyeh, Tuzlu Gol, and Gavkhouni and faults like Shahr-e-Babak and Abadeh, and to the south-southwest by the main thrust fault of Zagros. A striking feature of this zone is the presence of immense volumes of magmatic and metamorphic rocks of Paleozoic and Mesozoic eras.





Alborz-Azerbaijan

It is characterized by the dominance of platform-type sediments, including limestone, dolostone, and clastic rocks. Rock units from the Precambrian to the Quaternary have been identified, with some hiatuses and unconformities in Paleozoic and **Mesozoic.** The significant structural event occurring in Early **Devonian was accompanied by** faulting and fragmentation that led to different sedimentary facies in Azerbaijan

Turke

Eastern Iran

It can be divided into two parts: – Lut Block

– Flysch or colored mélange of the

SORTH CASPIAN

FOLDED ZONE

FORE ARC

BASIN

OLCANIC ROCKS

VOLCANIC CONE

....

ПТТТ

EURASIAN CONTINENT (Northern part of so- called Paleo- Tethys)

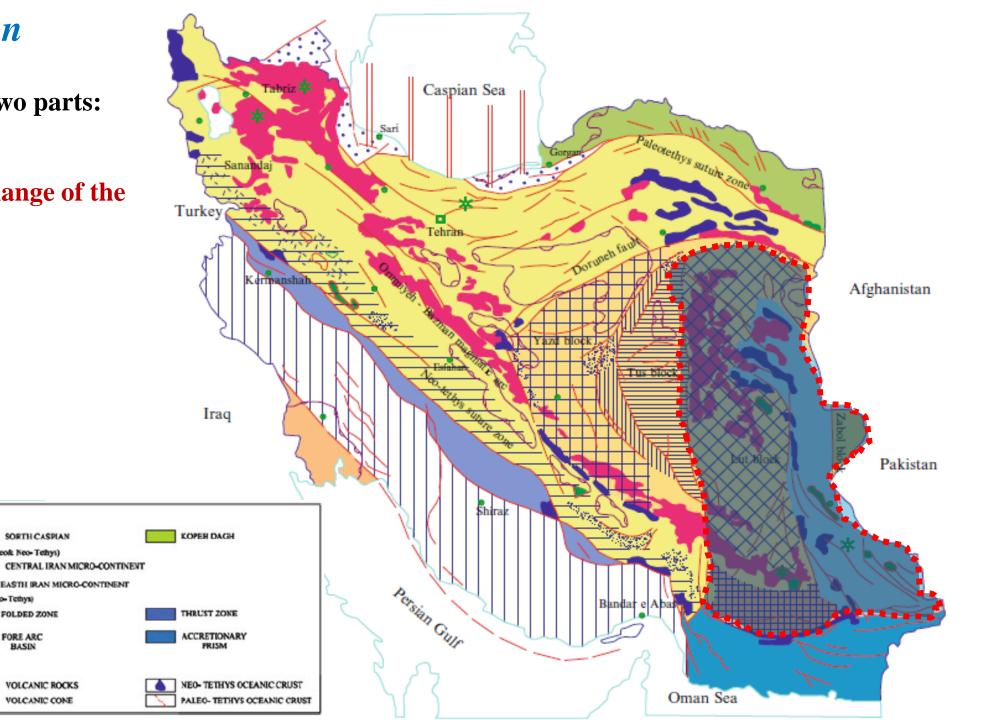
GONDWANEAN CONTINENT (Northern Block-Areas between Paleo& Neo-Tethys)

GONDWANEAN CONINENT (Southan Block- South of so-called Noo-Tethys)

PARATETHYS BASIN

CENTRAL DOMAIN ZABOL BLACK

UNFOLDED ZONE


METAMORPHIC DOMAINS

INTRUSIVE BODIES

MAKRAN

SYMBOLS

5

Eastern Iran

Lut Block

It extends for about 900 km in the north–south direction.

EURASIAN CONTINENT (Northern part of so- called Paleo- Tethys)

GONDWANEAN CONTINENT (Northern Block-Areas between Paleo& Neo- Tethys)

GONDWANEAN CONINENT (Southan Block- South of so-called Neo-Tethys)

PARATETHYS BASIN

CENTRAL DOMAIN ZABOL BLACK

UNFOLDED ZONE

METAMORPHIC DOMAINS

INTRUSIVE BODIES

MAKRAN

SYMBOLS

The oldest units include upper Precambrian–Lower Cambrian schists overlain by Permian limestone and other Paleozoic sedimentary rocks.

SORTH CASPIAN

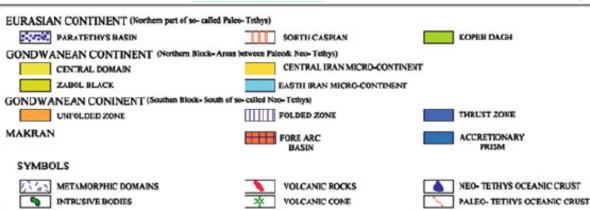
FOLDED ZONE

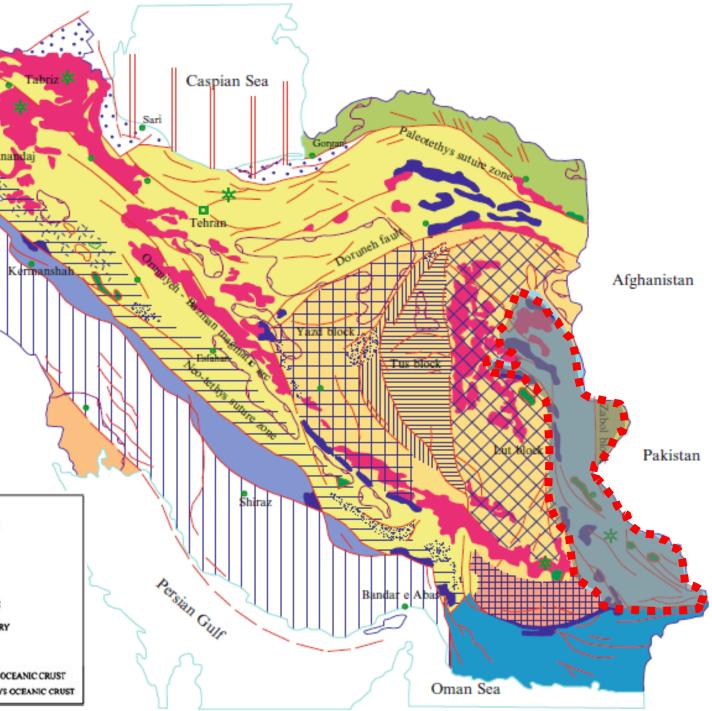
OLCANIC ROCKS

VOLCANIC CONE

FORE ARC BASIN

CENTRAL IRAN MICRO-CONTINENT


EASTH IRAN MICRO-CONTINENT



Eastern Iran

Flysch or colored mélange of the Zabol–Baluch Zone

In contrast to the Lut Block, the Flysch Zone is highly deformed and tectonized and consists of thick deep-sea sediments like argillaceous and silicic shales, radiolarite, and pelagic limestone and volcanic rocks such as basalt, spilitic basalt, diabase, andesite, dacite, rhyolite, and subordinate serpentinized Iraq ultramafic rocks.

Makran

The oldest rocks in this zone are the ophiolites of late Cretaceous– Paleocene overlain by a thick sequence (about 5,000 m) of sandstone, shale, and marl. The whole sequence is deformed prior to Early Miocene.

SORTH CASPIAN

FOLDED ZONE

OLCANIC ROCKS

VOLCANIC CONE

FORE ARC BASIN

CENTRAL IRAN MICRO-CONTINENT

ASTH IRAN MICRO-CONTINENT

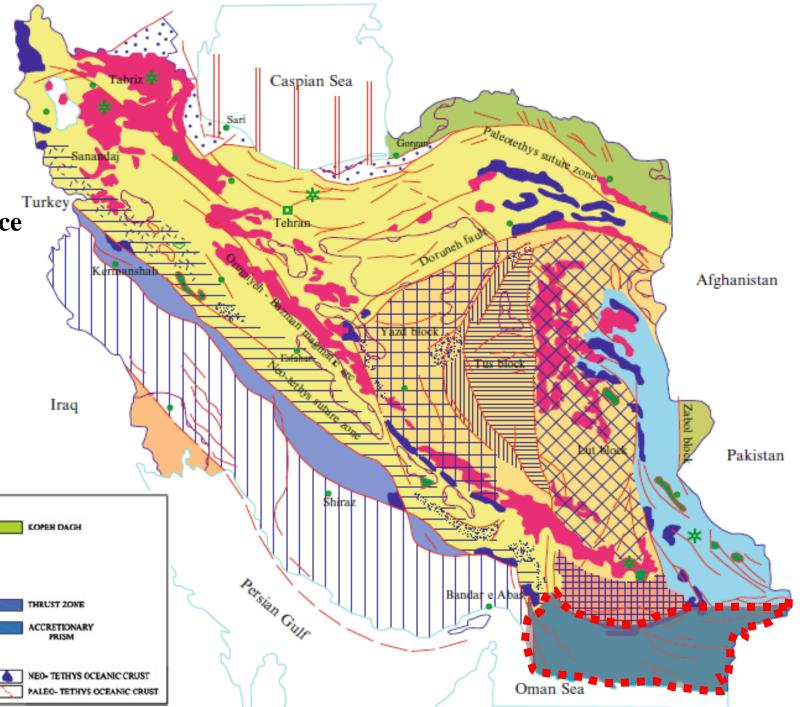
EURASIAN CONTINENT (Northern part of so- called Paleo- Tethys)

GONDWANEAN CONTINENT (Northern Block-Areas between Paleo& Neo- Tethys)

GONDWANEAN CONINENT (Southan Block- South of so- called Neo- Tethys)

PARATETHYS BASIN

CENTRAL DOMAIN ZABOL BLACK


UNFOLDED ZONE

METAMORPHIC DOMAINS

INTRUSIVE BODIES

MAKRAN

SYMBOLS

Zagros

It is in fact the northeastern edge of the Arabian plate. Some important features of Zagros include – Absence of magmatic and metamorphic events after Triassic – Low abundance of the outcrops of Paleozoic rocks

Structurally consisting of large anticlines and small synclines
Continuous sedimentation from Triassic to Miocene with negligible

SORTH CASPIAN

FOLDED ZONE

LCANIC ROCKS

OLCANIC CONE

FORE ARC BASIN

CENTRAL IRAN MICRO-CONTINENT

ASTH IRAN MICRO-CONTINENT

hiatuses

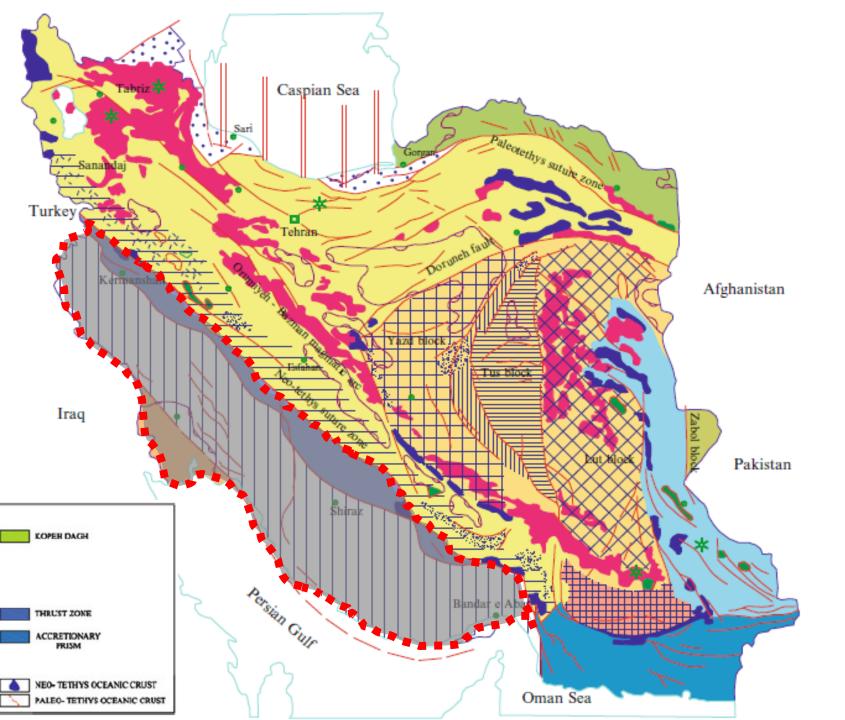
PARATETHY'S BASIN

CENTRAL DOMAIN

UNFOLDED ZONE

INTRUSIVE BODIES

AMORPHIC DOMAINS

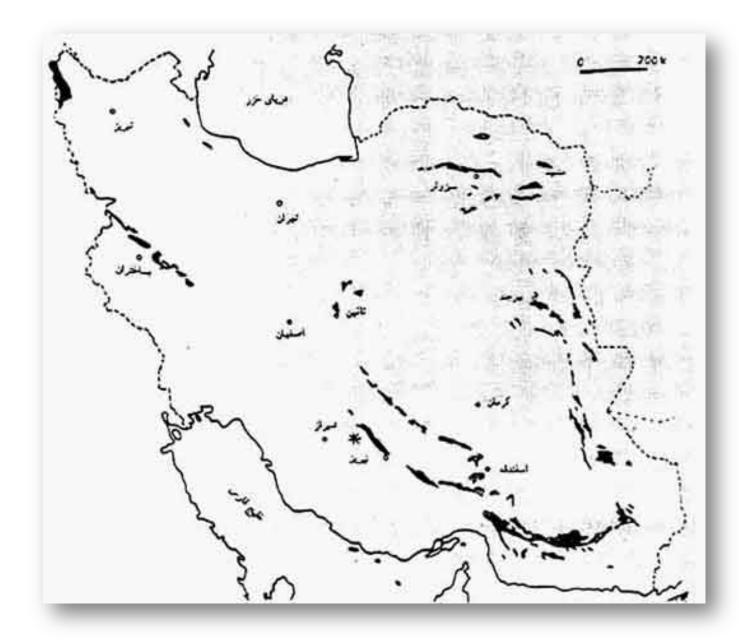

MAKRAN

SYMBOLS

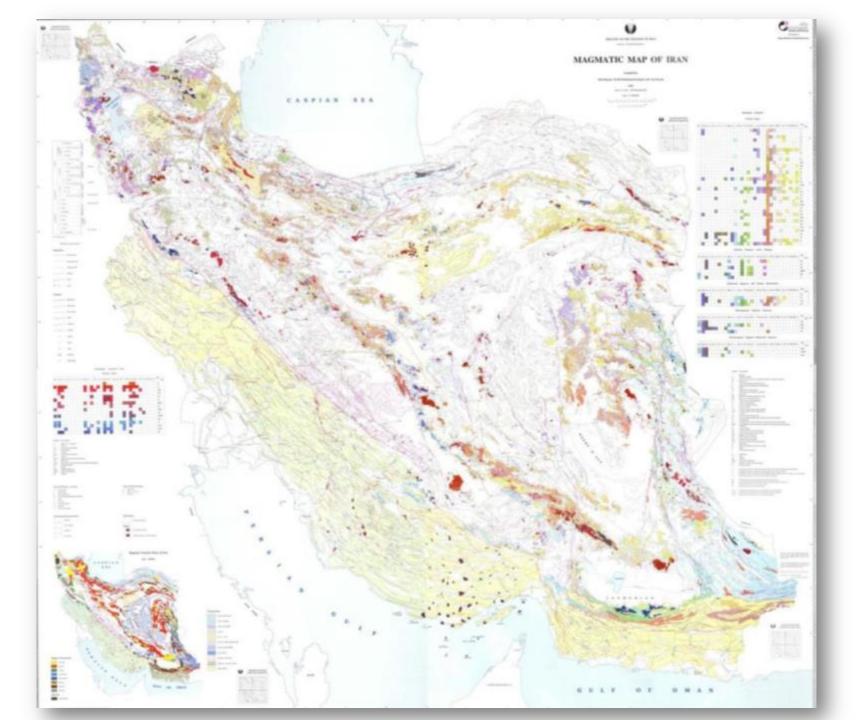
EURASIAN CONTINENT (Northern part of so- called Paleo- Tethys)

GONDWANEAN CONTINENT (Northern Block-Areas between Paleo& Neo-Tethys)

GONDWANEAN CONINENT (Southan Block- South of so-called Neo-Tethys


Structural and Orogenic Events in Iran

ER	CULATE DRAMPY	EPOCH / AGE	AGE				
0			1		Pasadenian Styrian	پاسادنين	
	HEGHE ICH		23.8	~~~~~~~	Savian	اُسترين ساوين	
			33.7		Pyrnean	پيرنٽن	
	PLEOGRE	EOCENE					
	E E		54.8				
		PALEOCENE	65	haaaaa	Laramian	U ر امین	
		Late					
-		2010		~~~~~~	Sub-Hercynian	ساب هرسی نین	
	CREPACEOUS		98.9		Austrian	اتریشی	گام ساختاری چهارم
		-					, y 40 00 - 00 100
	2	Early					
MESOZOIC	3		143		Late-Cimmerian	سیمرین پسین	
	2	Late	159.4		Tabasian	طبسين	
(E)	ILRASIC	Middle		~~~~~	Mid-Cimmerian	، یں سیمرین میانی	
2	A BI		180				
		Early					
		,	206.7				
	8	Late	227.4		Early-Cimmerian	سیمرین پیشین	
	TRIASSIC	Middle	221.4		Luny control and	سينترين پيسين	
	1	Early Late	248.2		Palatian	پالاتين	
	PENNAN	Earty	290				
	CHRONEBOUS	Late	290		Hennesten		
	108H	Early			Hercynian Alborzian	هرسی نین البرزین	
0		Late	354			0.00	گام ساختاری سوم
DIC	DEIONM	Middle			Caledonian	كالدونين	کام ساختاری سوم
20	B	Early	417				
E.(Early	443				
PALEOZOIC	NICINORIO	Late Middle					
-	- 8	Early	495				
	CANBRAN	Middle			Milaian Zariganian	ميلايين	
	3	Early	540		-	زریگانین	
	O NE	OPROTER			کاتانگاییKatangan (Tashkian	(اسینتیک؛ بایکالی تاشکین	
SRIA	ZOI		1000				گام ساختاری دوم
AME	ON WE	SOPROTER	1600	·····	Chapedonian	چاپدونين	
PRECAMBRIAN	PROTEROZOIC	LEOPROTER					گام ساختاری اول
Ч	4	L. O. H. O'LLY	2500				
				کوهزایی خشکی ز		راهنما	


Ophiolite Series and Ultramafic Rocks of Iran

- Ultramafic and mafic units of Late **Precambrian–Early Cambrian: Although** comparable to modern ophiolites, these rocks do not display all typical features of an oceanic crust. These rocks are widespread in Takab and Anarak Regions. They might be representing a protorift. – Ultramafic and mafic rocks of Upper **Paleozoic:** These rocks occur as metamorphosed as well as nonmetamorphosed bodies in some areas like Fariman, Shanderman, and Asalam. These rocks display many typical features of modern ophiolites.

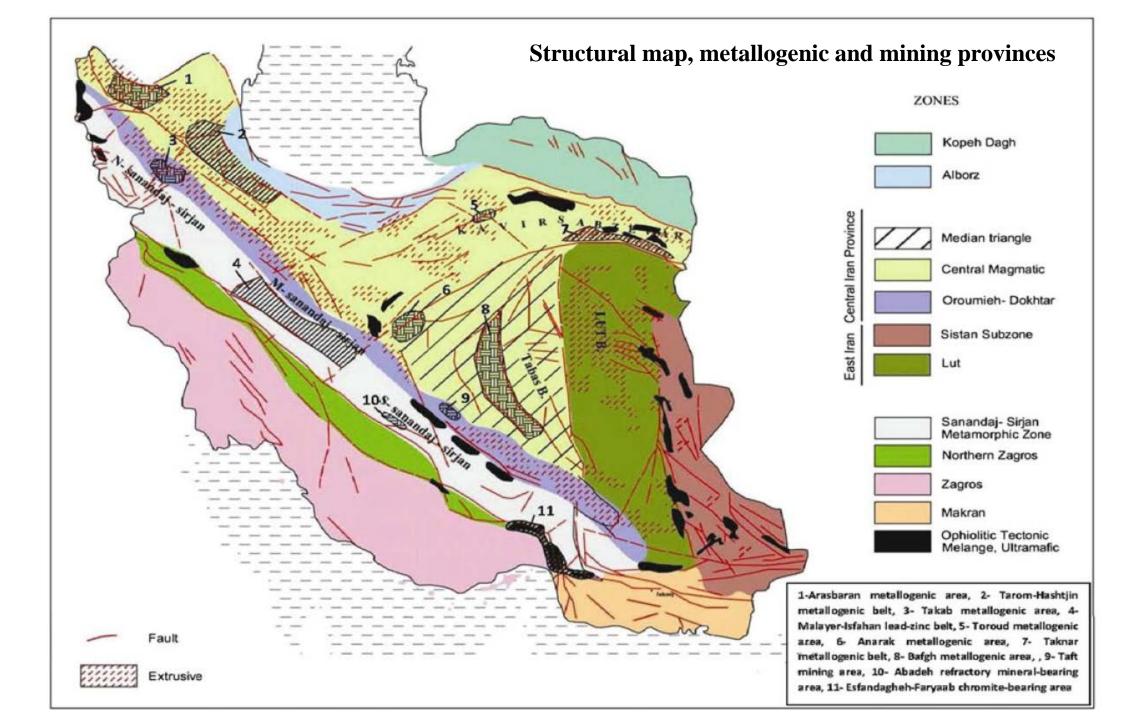
- Ophiolite series of Early Cretaceous– Paleogene age: These rocks show typical features of ophiolitic sequences and are thought to be associated with the closure of Neotethys.

- Magmatic rocks of all ages, from the Precambrian to the Quaternary, are widespread in Iran (e.g., Doran granite, Zarigan–Narigan granite, Torghabeh granite, Ghaen granite, Chaghand gabbro, Alvand granite, Natanz granite).
- A correlation exists between the distribution of magmatic rocks and certain types of ore deposits (e.g., iron deposits in Bafgh related to Zarigan–Narigan-type granites,
 Mazraeh copper deposit related to Sheyvar–Daghi granite,
 Sarcheshmeh porphyry deposit related to Sarcheshmeh porphyry body).
- Several episodes of magmatic activities have been identified in Iran.

Major episode of Magmatism in IRAN

Upper Precambrian–Lower Cambrian

Lower Paleozoic


Upper Paleozoic

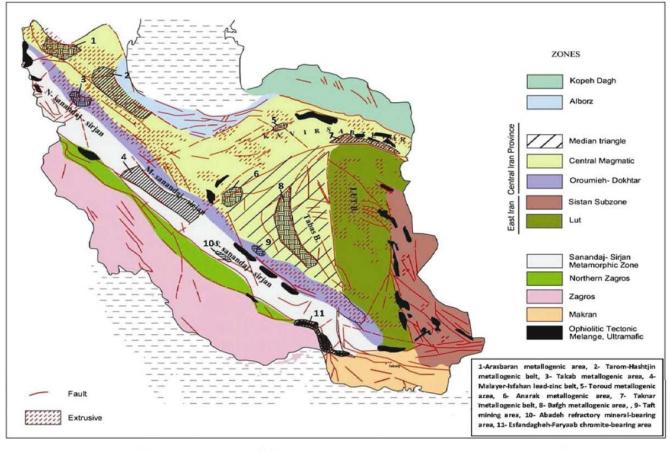
Mesozoic

Tertiary

Metallogenic and Mineralization Phases of Iran

- 1. Late Proterozoic–Early Cambrian (coinciding with the Pan-African tectono-magmatic event)
- 2. Lower Paleozoic (corresponding to the Caledonian tectono-magmatic event)
- 3. Upper Paleozoic–Triassic (corresponding to Hercynian and Early Cimmerian)
- 4. Jurassic–Early Cretaceous (Middle Cimmerian tectono-magmatic event)
- 5. Late Cretaceous–Lower Paleozoic (Laramide tectono-magmatic event)
- 6. Tertiary–Quaternary (Late Alpine tectono-magmatic event)

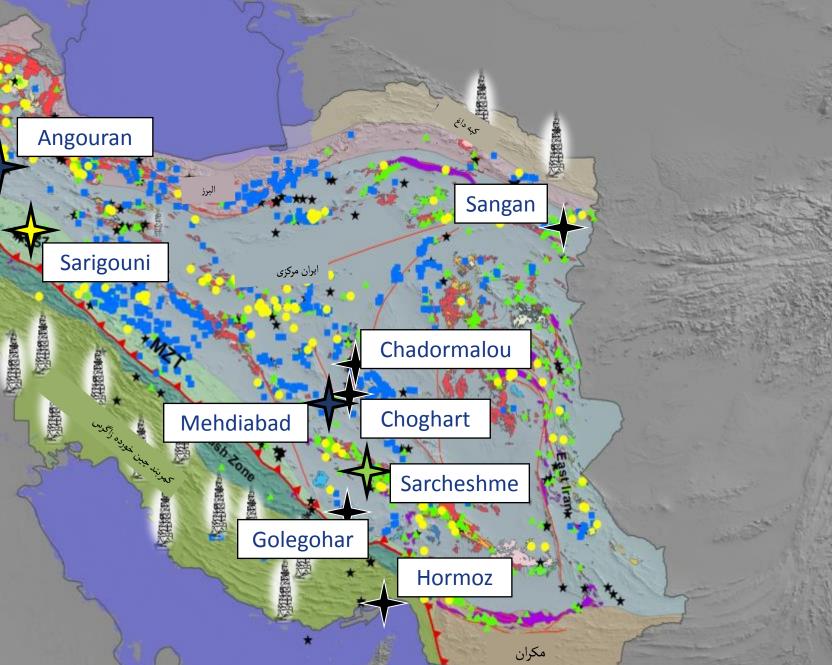
Metallogenic provinces of Iran are as follows

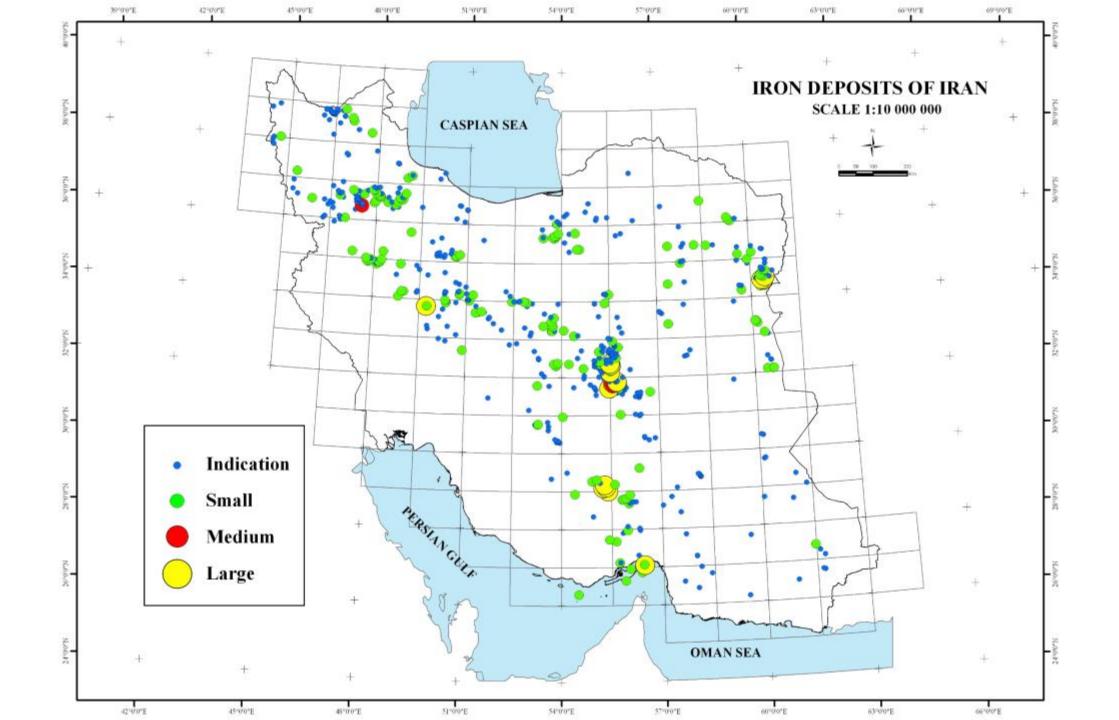

- Central Iran
- Urumiyeh-Dokhtar metallogenic province
- Sanandaj-Sirjan metallogenic province
- Northeast metallogenic province (Taknar, Kavir, Sabzevar Belts)
- Alborz metallogenic province
- Southeast and east of Iran metallogenic province
- Zagros oil and gas province
- Kopet-Dagh oil and gas province

Metallogenic (mining) belts of Iran are as follows:

- Malayer-Isfahan lead and zinc belt
- Kerman copper belt
- Esfandagheh-Faryab chromite ophiolitic belt
- Khash-Nehbandan Belt (with chromium, copper, and magnesium deposits)
- Qom-Naein Belt (manganese, barite, copper deposits)
- Kavir-Sabzevar Belt (copper, chromium, gold, iron deposits)
- Taknar Belt (copper, gold, arsenic deposits)
- Tarom-Hashtjin Belt (copper, iron, lead, zinc, gold deposits)
- Maku-Khoy-Urumiyeh Belt (gold, mercury, copper, chromium, iron deposits)

Metallogenic areas are as follows:


- Takab area (gold, arsenic, antimony, mercury, lead, zinc, poly-metal deposits)
- Bafgh area (iron, lead, zinc, apatite, REE deposits)
- Anarak area (copper, lead, zinc, gold, iron, antimony, arsenic deposits)
- Arasbaran area
- Tabas area (refractory, fl uorite, manganese, lead, zinc deposits)
- Abadeh refractory material-bearing area
- Kuhbanan-Ravar- Behabad triangle (lead and zinc deposits)
- Qorveh–Asadabad area (antimony, gold, iron deposits)
- Taft area (lead, zinc, copper deposits)



1-Arasbaran metallogenic area, 2- Tarom-Hashtjin metallogenic belt, 3- Takab metallogenic area, 4-Malayer-Isfahan lead-zinc belt, 5- Toroud metallogenic area, 6- Anarak metallogenic area, 7- Taknar metallogenic belt, 8- Bafgh metallogenic area, , 9- Taft mining area, 10- Abadeh refractory mineral-bearing area, 11- Esfandagheh-Faryaab chromite-bearing area Fe Cu Pb-Zn Au Oil = 4th of world Gas= 2th of world

Soongoon

10 world class deposits

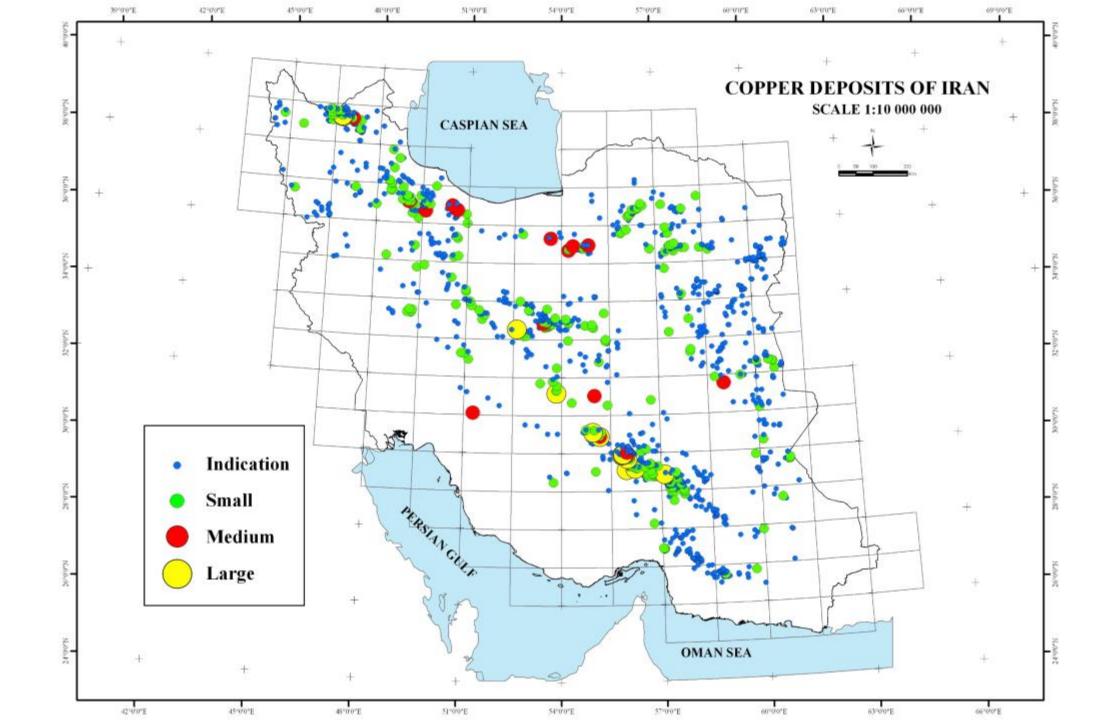
Iron (Fe-Content)

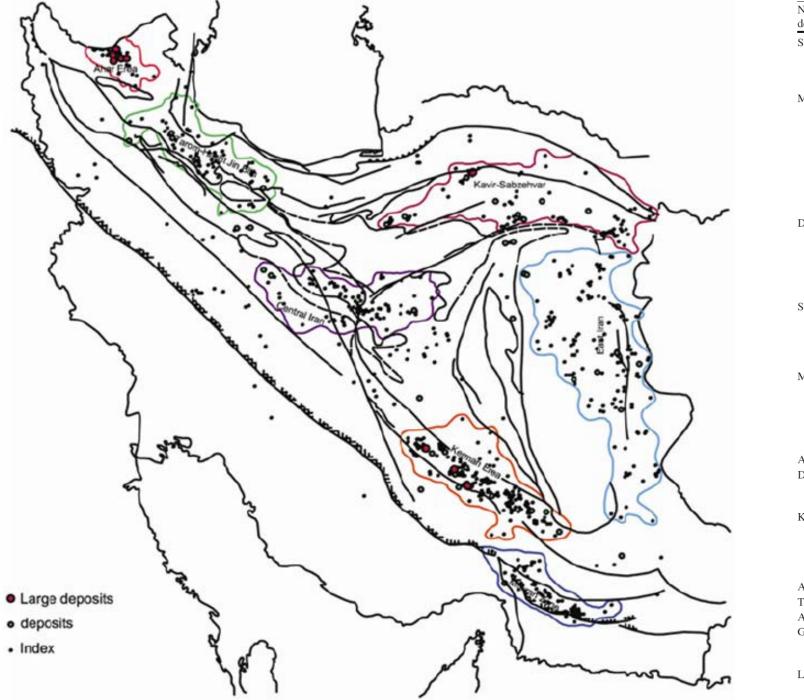
Rank	Rank	Country	Production	Share
2012	2011		2012	in %
			metr. t	
1	(1)	China	419 200 000	29,77
2	(2)	Australia	327 600 000	23,27
3	(3)	Brazil	232 477 000	16,51
4	(4)	India	91 132 730	6,47
5	(6)	Russia, Europe	47 476 000	3,37
6	(7)	South Africa	43 615 310	3,10
7	(5)	Ukraine	42 975 400	3,05
8	(8)	United States	33 516 000	2,38
9	(10)	Canada	24 050 470	1,71
10	(11)	Venezuela	18 000 000	1,28
11	(12)	Sweden	16 985 600	1,21
12	(13)	Kazakhstan	16 827 530	1,20
13	(9)	Iran	15 635 000	1,11
14	(14)	Russia, Asia	9 724 000	0,69
15	(15)	Chile	9 429 000	0,67

Metallogenic Phases of Iron

It must be noted that the deposits of Late Proterozoic–Early Cambrian are more abundant than those of other time periods.

~4 billion tons of iron ore of: Igneous (Sangan, Bafgh, Zanjan, ^L Morvariyeh,Sorkhe-Dizaj) Sedimentary volcanic (Bandar Abbas,

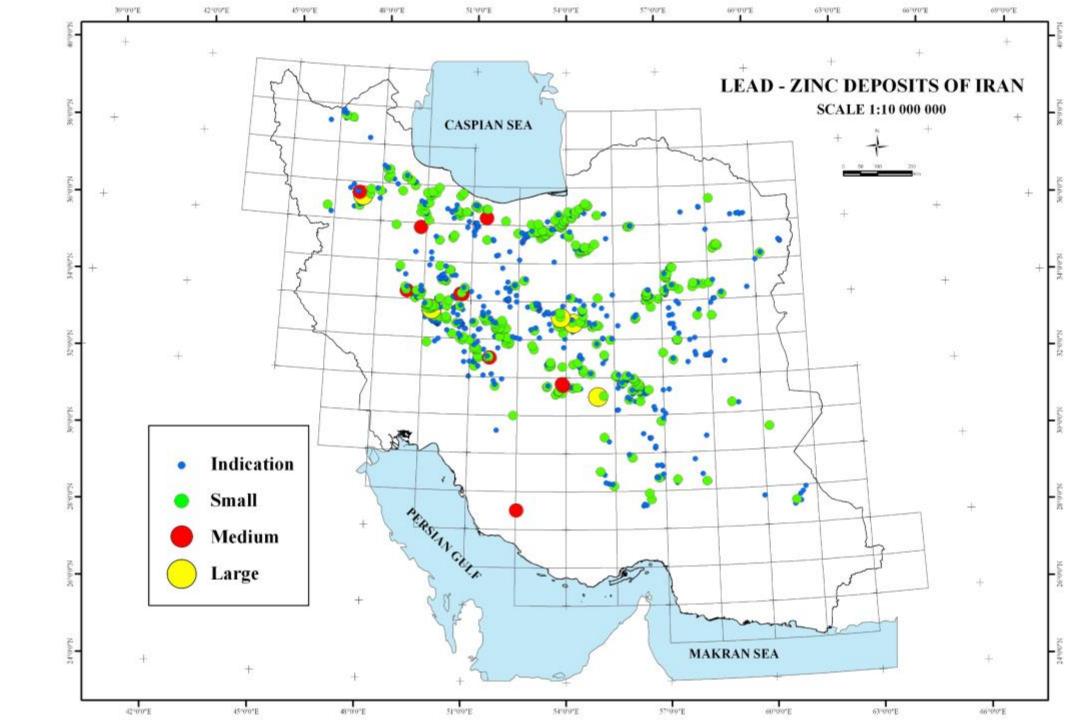

Shams Abad)

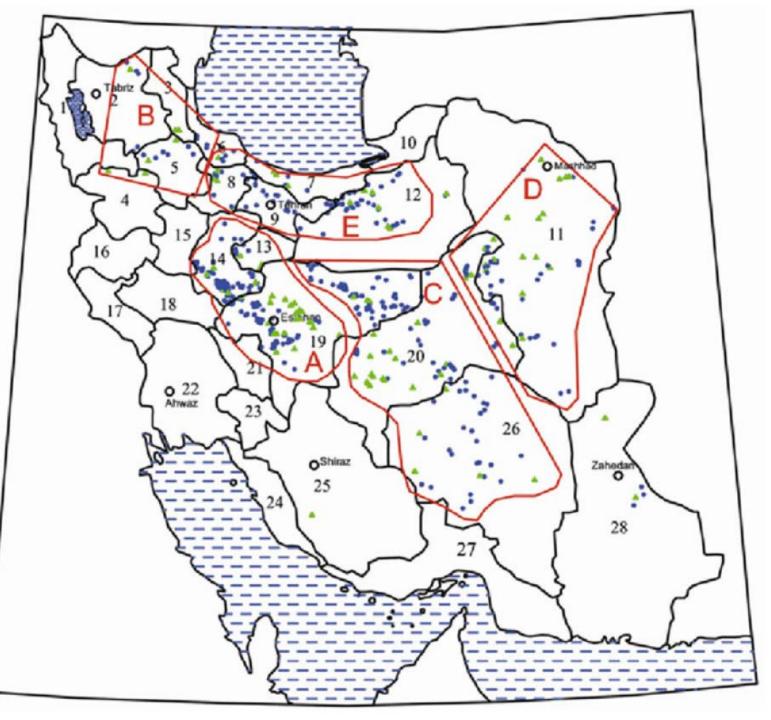

Volcanosedimentary (Soltanieh-

Mahabad Belt, Hamekasi Complex origins)

have been discovered till date

Age		Paragenesis			Location	Deposits and indication
Tertiary Lat Eocene-	te -Quaternary	Magmatic	Concurrent with Oligocen and plutonic activity	e volcanic	Urumiyeh–Dokhtar zone	Niasar (Kashan), Daran, Shahrak, and Kuh Baba
			Associated with Oligo-Mi activity	ocene igneous	Alborz zone	Semnan, Sorkhe Dizaj, Morvariyeh (north of Khoram Dareh), Damirchi
			Metasomatic and volcanic; orthomagmatic		East of Iran	Sangan
Mesozoic	Cretaceous	Magmatic skarn,	Magmatic skarn		Hamedan region	Baba Ali, Chenar Bala, Golali
		volcanogenic	Magmatic skarn		Northeast of Khoy	Eskandian (Late Cretaceous– Early Paleocene)
			Volcano sedimentary		Southwest of Arak	Shams Abad (lower Cretaceous)
	Triassic– Early Jurassic	Associated with plutor	nic bodies		Northern regions of Sanandaj–Sirjan zone	Hezar Khani, Khosro Abad, Charmale (Songhor), Zafarabad, Hamekasi Complex
	Julassie	Sedimentary			Central Iran	Kharanagh Oligist, Rebat, Posht Badam
Late Paleoz Triassic	oic-Early	Volcanosedimentary			East of Iran	Kalat Naser (east of Ghaen), Ahangaran region
					Southern Sanandaj–Sirjan	Honeshk Iron and Manganese (Dehbid, Fars)
					Hamedan–Kordestan Region	Zafarabad (Kordestan)
					Alborz zone	Masooleh (Gilan)
Late Proter Cambri	rozoic–Early an	Magmatic	Zarigan–Narigan type granitic magmas		Central Iran	Choghart, Chadormalu, Sechahoon, Mishdavan, Esfordi, and most of the deposits at Bafgh area
			Mafic and Ultramafic Magmas		South of Sanandaj– Sirjan zone	Gol Gohar
		Directly or indirectly associated with plutonic or volcano sedimentary rocks	Volcanosedimentary, inte Rizoo and Dezoo For		Central Iran	Manganiferous iron deposit at Mishdavan and Ghar Dareh Dahoo
			Volcanosedimentary, associated with Qareh Dash Volcanics and lower parts of	Intermingled with Qareh Dash Volcanics	Azerbaijan	Bordeh Rash Kuh, Bichaghchi and Hamam (Shahin Dezh)
			Soltanieh Formation	Stratiform with Upper Kahar and Lower Soltanieh as host	Azerbaijan	Arjin, Shah Bolagh, Mirjan, Ghaliche Bolagh, Char Tagh, Balestan
			Volcanosedimentary, alor Hormoz Series and its volcanic rocks		Bandar Abbas and islands towards the south	Tange Zagh, Hormoz, Larak and Qeshm





Name of deposit	Location	Reserves and grade	Details
Sarcheshmeh	Kerman	1.2 billion tons with an average grade of 0.68% of copper	Molybdenum (300 ppm), gold (270 ppm), and silver (309 ppm) are associated with this deposit
Meydouk	Kerman	Exploitable deposit is estimated at around 140 million tons with an average grade of 0.85%; comprising of 70 million tons of hypogene reserves having 0.70% grade and 70 million tons of supergene reserves having 1% grade	The results of drilling in the area reveal that the probable reserve of Meydouk is around 500 million tons and the copper grade increases with depth
Darre Zar	Kerman	1.1 million tons oxide reserve with 0.95% grade. 41 million tons of 0.70% proved reserves and 100 million tons of probable reserves	In spite of the absence of supergene deposit, the stripping volume is not great. Molybdenum grade reaches around 500 ppm
Songoon	Ahar	Proved and probable reserves estimated at about one and two billion tons, respec- tively, with an approximate grade of 0.70%	The supergene reserve is limited, and most copper is situated in hypogene level. Molybdenum grade is around 200 ppm
Mazra'e	Ahar	Total reserved measures at 431,062 tons with 1.7% copper grade. Exploitable reserve is around 387,900 while probable reserves is 860,000 tons	_
Anjard	Ahar	_	_
Darre Zereshk	Taft	Proved reserve is 29 million tons with 0.68% copper	The reserves are estimated for 3,079 m level using 21 boreholes
Kale Kafi	Anarak	Proved reserve is 13.5 million tons with 0.90% copper	Mineralization is in supergene region with very poor hypogene. Total drilling in the area 15 boreholes measuring 2,200 m
Aliabad	Taft	_	_
Taknar	Kashmar	_	_
Abbasabad	Shahrood	_	_
Ghal'e Zari	Eastern Iran	Proved reserve is 360 thousand tons with 0.30–0.50% copper	The deposit is of vein-type with high gold content of about 10 ppm
Lar	Zahedan	40 million tons of probable reserves with a grade of around 0.40–0.45%	-

Details of important copper mines in Iran

	Geographic coordinates	Production			Details							
Name of the mine		2000	2001	2002	Status	Main product	Type of mining	Proved reserve (million tons)	Probable reserve (million tons)	Annual production	Average grade	
Sarcheshmeh	55°50′ 29°58′	0.1–0.12	0.1–0.12	0.1-0.12	Active	Cu	Open pit	826.5	1,200	0.14	Cu=0.68	
Meydouk	55°10′ 30°10′				Being equipped	Cu	Open pit	180	500	0.05	Cu=0.85	
Ghal'e Zari	58°55′ 31°49′	0.06	0.06	0.06	Active	Cu	Underground	0.36	1.315	0.1	Cu=0.5- 3.0 Au=6 ppb	
Mazra'e	47°04′ 38°39′	0.03 27–30% con- cen- trate	0.03 27–30% concen- trate	0.03 27–30% concen- trate	Active	Cu	Underground	0.2	0.431	0.04 concentrate	Cu = 1.70	
Songoon	46°43 38°42				Being equipped	Cu	Open pit	1,000	2,000	0.6 copper	Cu = 0.70	
Taknar	57°46′ 35°22′				Being equipped	Cu, Pb, Zn	Underground	_	79	0.125 ore	Cu = 1.50	

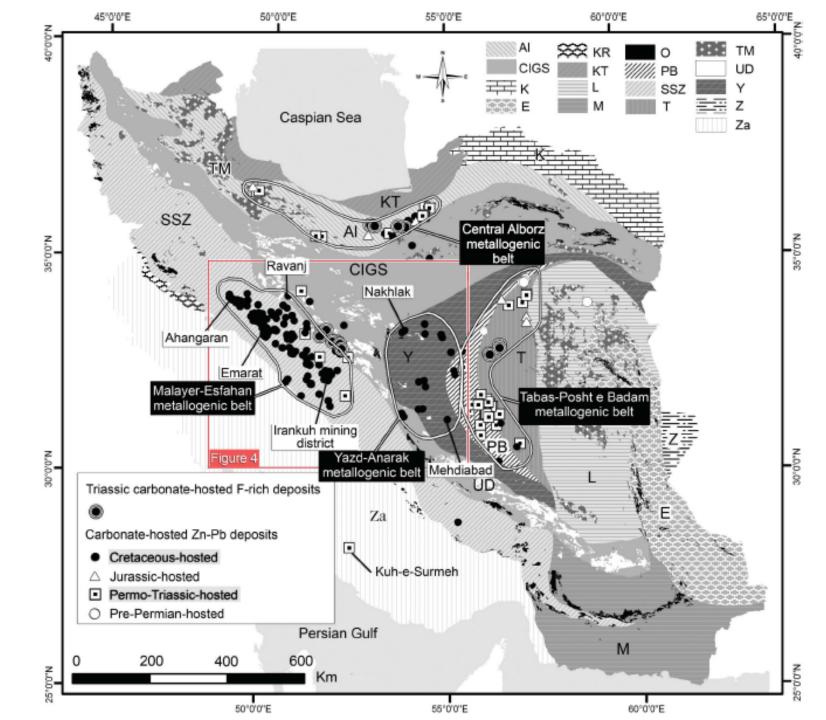
- A : Malayer Esfahan Belt
- B : Azarbaijan
- C : Central Iran
- D : Eastern Iran
- E : Alborz
- Ore Deposit ▲
- Indication

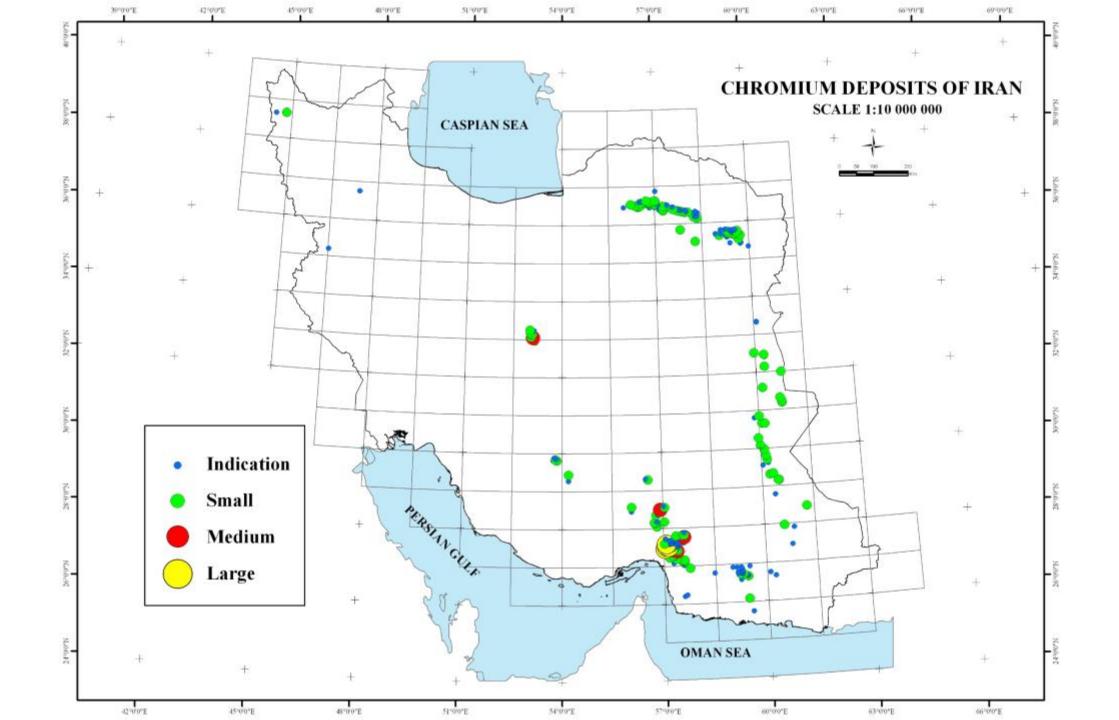
Provinces:

- 1 West Azerbayjan 15 Hamedan
- 2 East Azerbayjan
- 3 Ardebil
- 4 Kordestan
- 5 Zanjan
- 6 Gilan
- 7 Mazandaran
- 8 Ghazvin
- 9 Tehran
- 10 Golestan
- 11 Khorasan
- 12 Semnan
- 13 Ghorn
- 14 Markazi

- - 16 Kermanshah
 - 17 Ilam
 - 18 Lorestan
 - 19 Esfahan
 - 20 Yazd
 - 21 Chaharmahal & Bakhtiyari
 - 22 Khuzestan
 - 23 Kohkiluyeh & Boyerahamad
 - 24 Bushehr
 - 25 Fars
 - 26 Kerman
 - 27 Hormozgan
 - 28 Sistan & Baluchestan

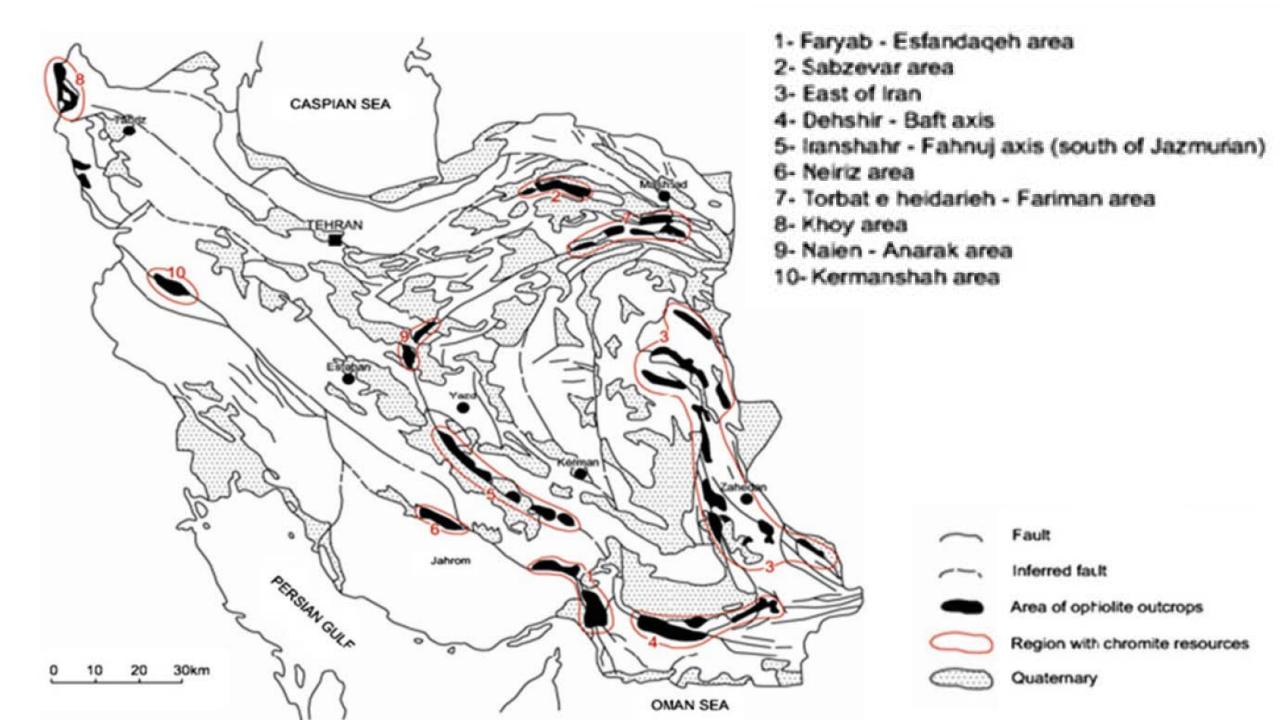
Metallogenic Phases of Lead and Zinc

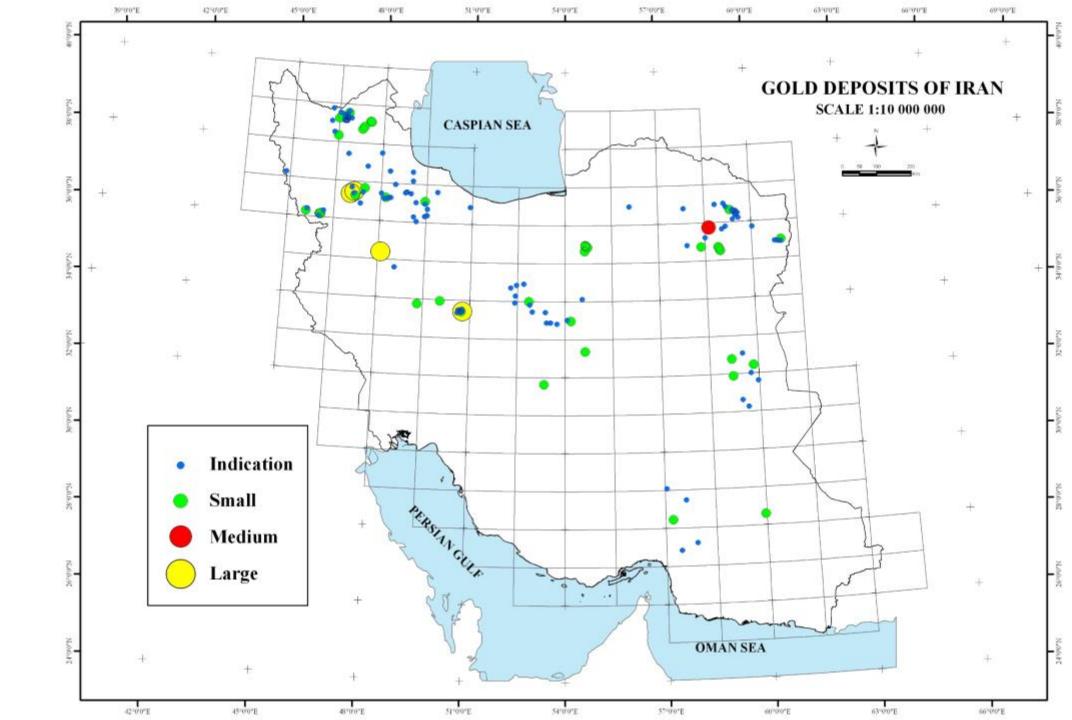

Late Proterozoic - Early Cambrian

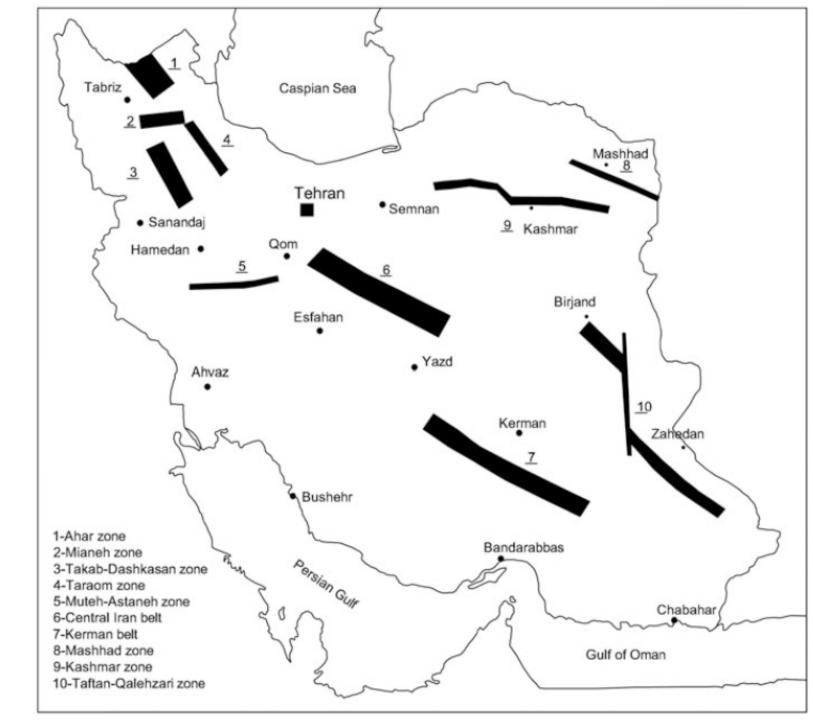

Late Paleozoic

Triassic

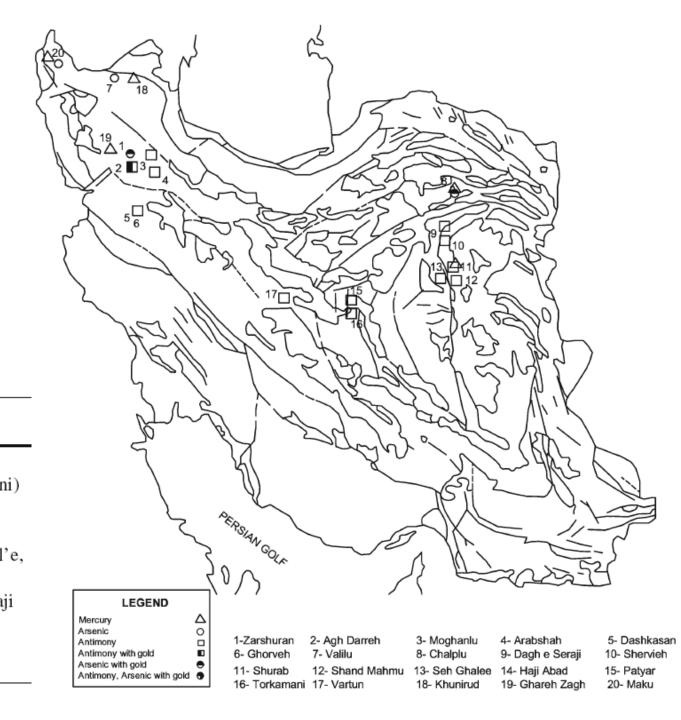
Cretaceous


Tertiary

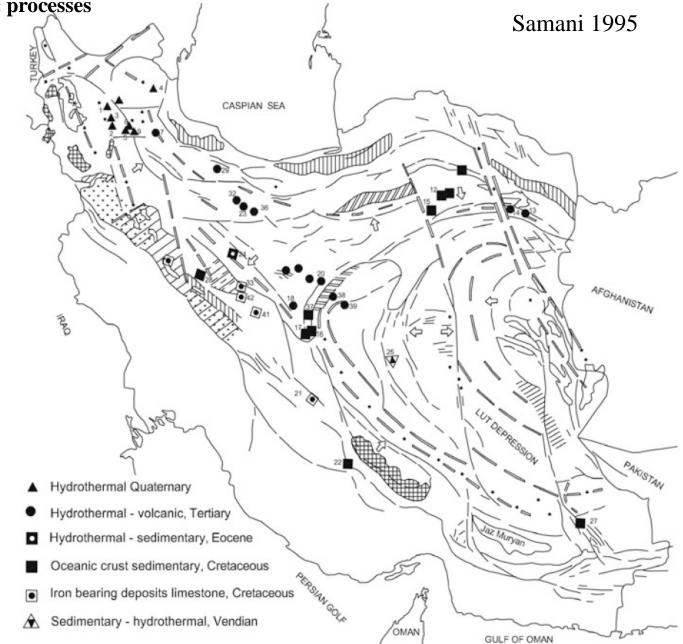



Chromium (Cr₂O₃ - Content)

Rank 2012	Rank 2011	Country	Production 2012 metr. t	Share in %
1	(1)	South Africa	4 976 500	39,81
2	(2)	Kazakhstan	2 250 230	18,00
3	(4)	Turkey	2 083 900	16,67
4	(3)	India	1 357 100	10,86
5	(9)	Russia, Europe	270 000	2,16
6	(7)	Oman	241 280	1,93
7	(5)	Finland	212 610	1,70
8 🔴	(11)	Iran	192 210	1,54
9	(8)	Brazil	184 275	1,47
10	(6)	Zimbabwe	183 814	1,47
11	(10)	Albania	158 400	1,27
12	(12)	Australia	127 700	1,02
13	(13)	China	85 800	0,69
14	(14)	Pakistan	71 680	0,57
15	(15)	Madagascar	65 905	0,53


The gold-bearing provinces and areas of Iran (Maghsoudi et al. 2005)

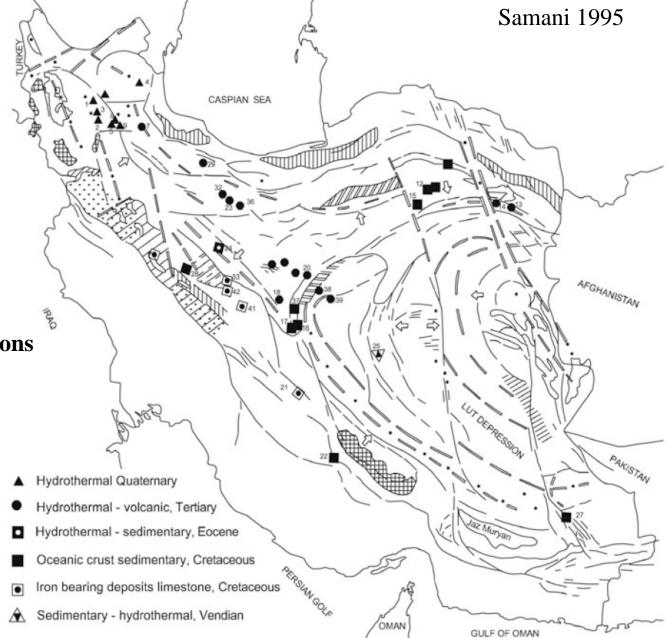
Distribution of antimony, arsenic, and mercury deposits of Iran (Ghorbani 1995)


General characteristics and type of deposit	Associated elements
Hydrothermal deposits having old	Sb+As±Hg along with gold
mafic and ultramafic basement	50+Ast fig along with gold
Hydrothermal deposits having old volcanosedimentary basement	$Sb+Hg\pm As$ along with gold
Hydrothermal deposits having Mesozoic continental basement	$Sb+Hg\pm As\pm (Pb\pm Zn)$
Hydrothermal deposits having Cretaceous ophiolitic basement	$Sb+Hg+As\pm Au$
Hydrothermal deposits having volcanic basement	As

Host rock	Explored areas and name of deposits
Old carbonates and metamorphic rocks	Takab area (Zarshooran, Arabshah, Agh Dareh), Anarak area (Patyar, Torkamani)
Young carbonates and old metamorphic rocks	Takab area (Moghanloo-Agh Dareh, Qizghapan, Qareh Dagh)
Mesozoic clastic rocks and/or younger igneous rocks	Ferdows area (Shoorab, Hesamieh, Se Qal'e, etc.), Qorveh area (Dashkesan)
Rocks of ophiolitic suites and/or their associated igneous rocks	Khoy area (Khan Geli), East of Qa'en (Haji Abad)
Sedimentary rocks	Ahar area (Valiloo)

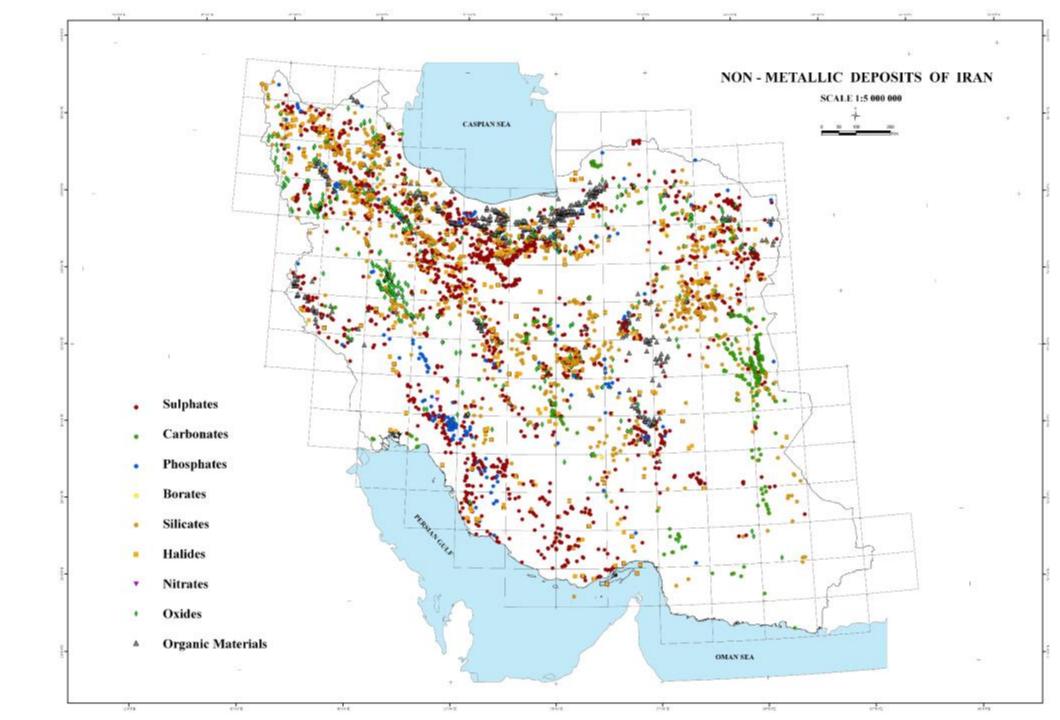
The manganese deposits of Iran are classified into three types (NISCO 1977):

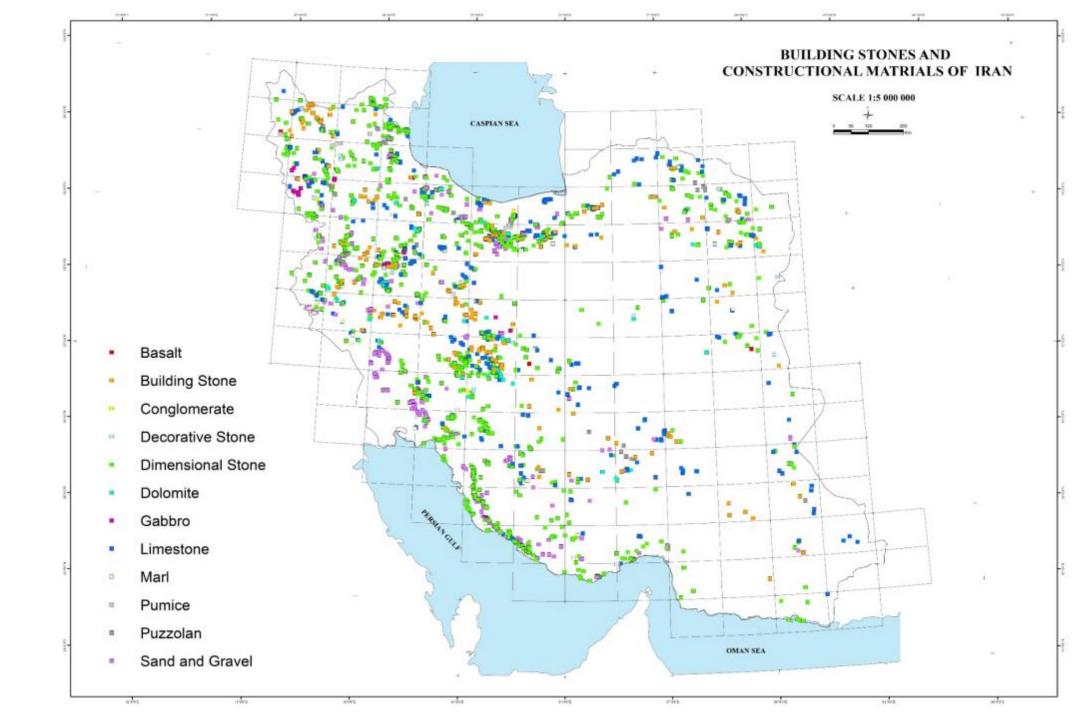
- (a) Hydrothermal vein deposits associated with volcano-plutonic processes
- (b) Volcanosedimentary deposits
- (c) Polygenetic deposits associated with limestone formations

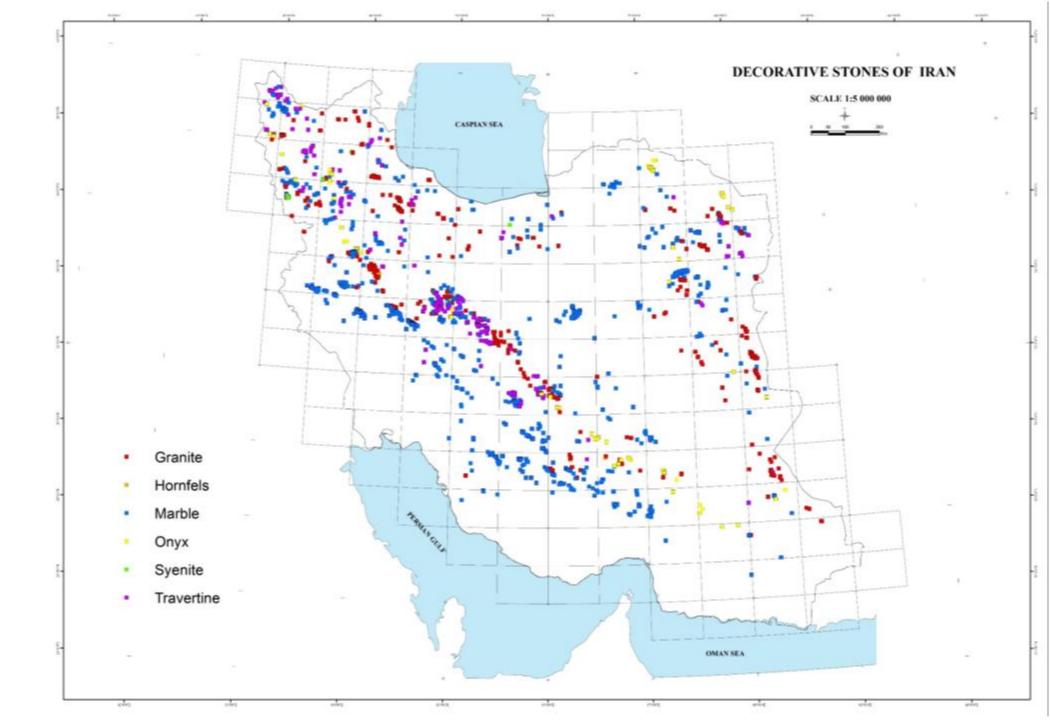


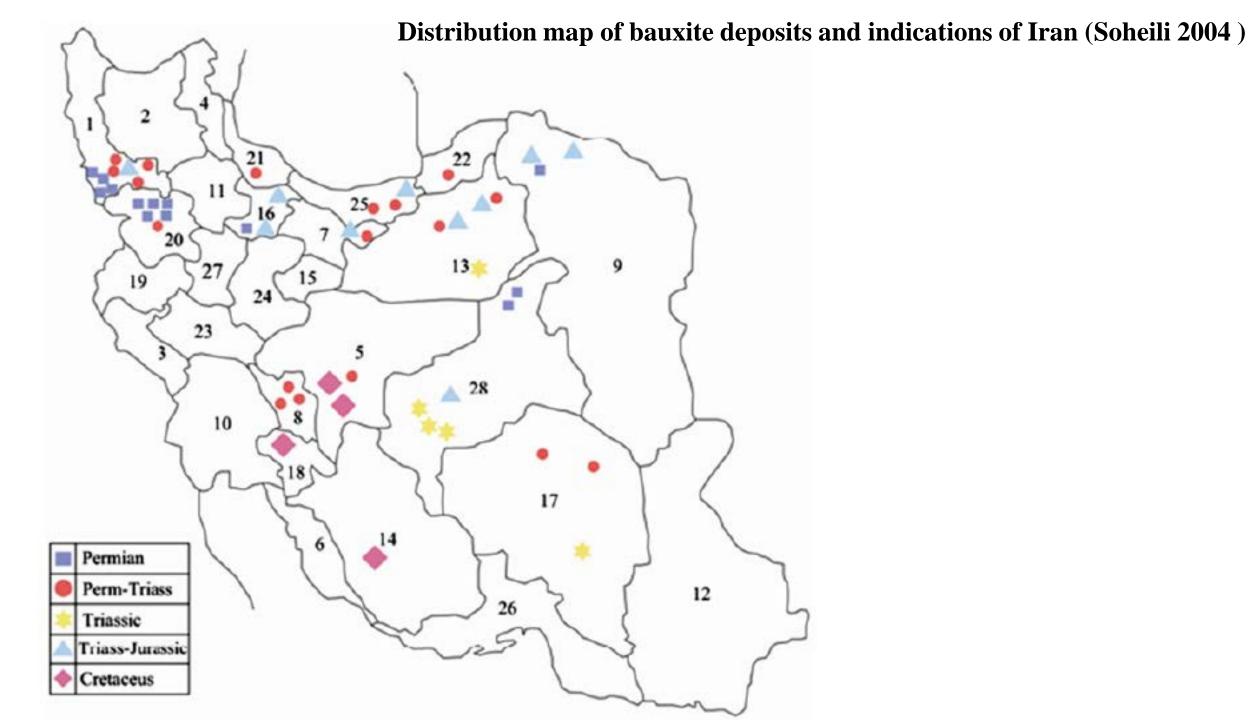
General characteristics of some manganese deposits of Iran

Age	Name of deposit or mineral indication	General characteristic
Neogene and Quaternary	Debakloo, Eideh Koochoo Ghani, Ghoopooz, Vila Dareh, Manamin, Zarshloo, Khalifeh Kamal, Galoojeh, Chai Talvar	Hot spring deposits (terrestrial)
Tertiary (volcanic- plutonic)	Chah Sefid, Sargaz, Robat Karim, Bozni, Sorkhshad, Abdol Abad, Noogh	Hydrothermal-vein (terrestrial)
Late Cretaceous– Paleogene	Venarch, Asad, Bensport, Bagh Qareh, Ab Band, Gonij, Benvid, Salam Rud, Zaboli	Sedimentary– hydrothermal (marine) Volcanosedimentary (marine)
Early Cretaceous	Shams Abad, Chah Basheh	Sedimentary associated with iron (marine)
Paleozoic	Kalat Naser, Heneshk	Associated with iron
Late Precambrian	Narigan, Amir Abad (east of Angooran)	Volcanosedimentary (marine)

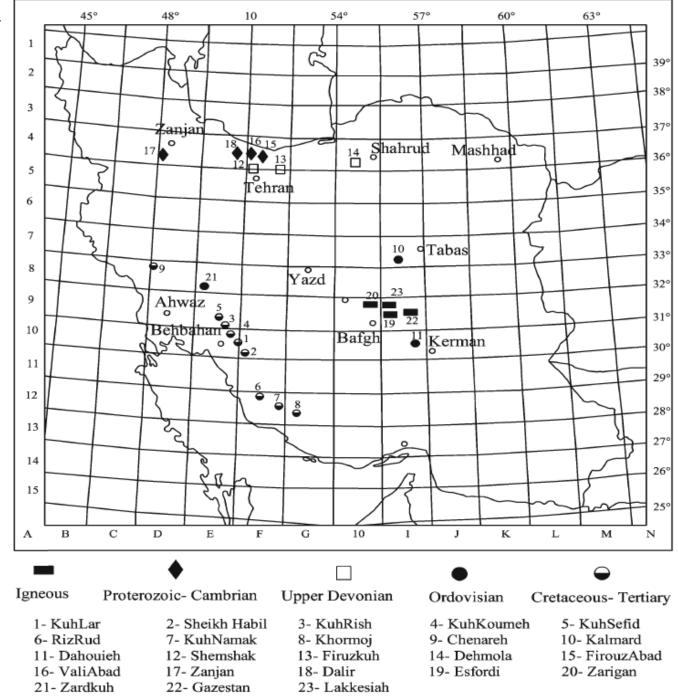

Provincial distribution of manganese deposits and indications

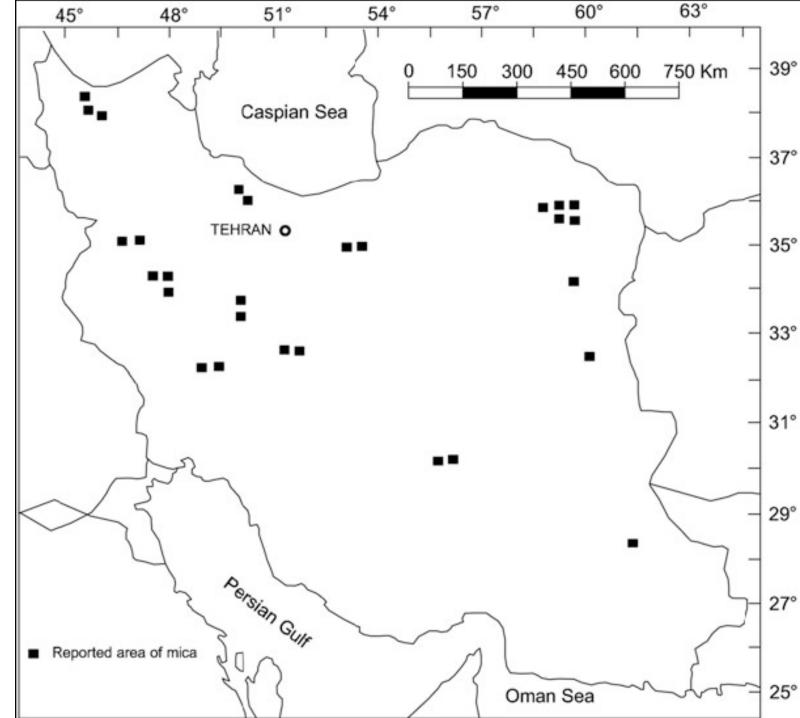

Sr. no.	Name of deposit or indication	Province	Sr. no.	Name of deposit or indication	Province
1	Debalkoo	East Azerbaijan	13	Bozni	Esfahan
2	Eideh Koochoo Ghani	East Azerbaijan	14	Sorkh Shad	Esfahan
3	Ghoopooz	East Azerbaijan	15	Chah Sefid	Esfahan
4	Vila Dareh	East Azerbaijan	16	Robat Karim	Tehran
5	Zarshloo	East Azerbaijan	17	Venarch	Tehran
6	Khalifeh Kamal	East Azerbaijan	18	Bensport	Khorasan
7	Manamin Khalkhal	East Azerbaijan	19	Asad	Khorasan
8	Koloocheh	East Azerbaijan	20	Nogh	Khorasan
9	Chai Talvar	East Azerbaijan	21	Bagh Qareh	Khorasan
10	Janbehan	East Azerbaijan	22	Salam Rud	Khorasan
11	Chahbashi	Esfahan	23	Honeshk	Fars
12	Benvid	Esfahan	24	Ab Band	Fars



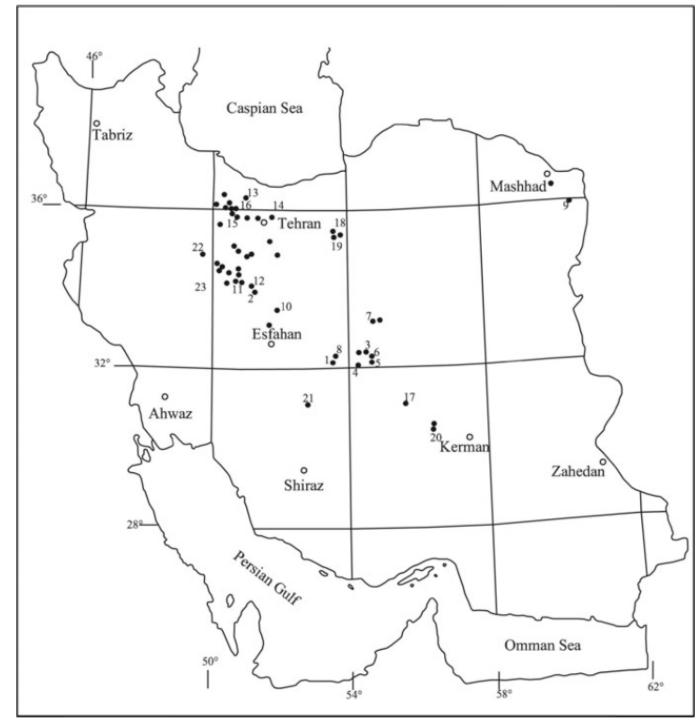

Manganese

Rank 2012	Rank 2011	Country	Production 2012 metr. t	Share in %
1	(2)	South Africa	3 935 100	20,81
2	(1)	China	3 700 000	19,57
3	(3)	Australia	3 459 840	18,30
4	(4)	Gabon	2 262 000	11,96
5	(5)	Kazakhstan	1 428 000	7,55
6	(6)	Brazil	1 118 000	5,91
7	(7)	India	882 400	4,67
8	(10)	Malaysia	527 800	2,79
9	(8)	Ghana	521 720	2,76
10	(9)	Ukraine	456 600	2,41
11	(11)	Mexico	188 294	1,00
12	(20)	Cote d'Ivoire	112 500	0,59
13	(13)	Georgia	90 000	0,48
9 14	(15)	Iran	46 000	0,24
15	(17)	Morocco	45 100	0,24

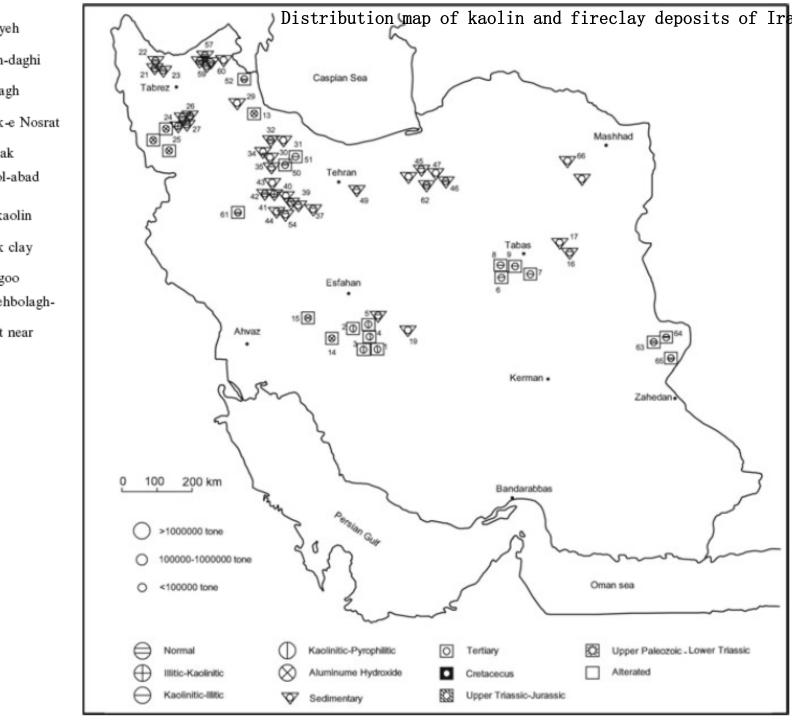




Distribution of Iran phosphate deposits through different geologic periods



Distribution map of mica deposits of Iran (Ghorbani 2011)



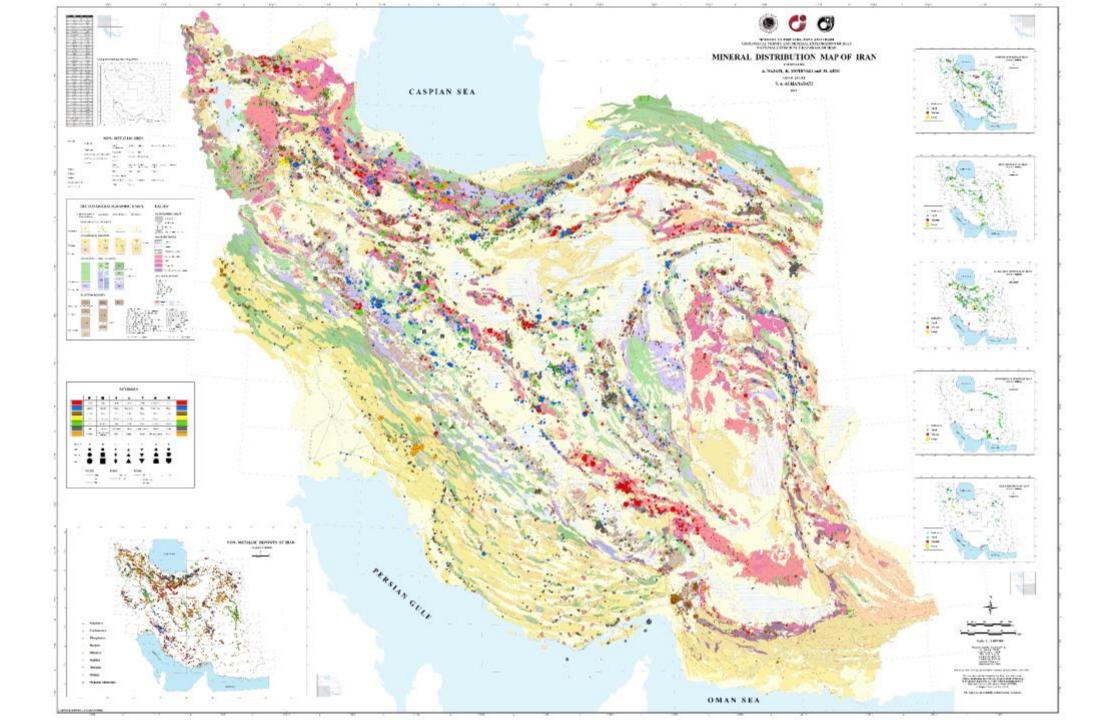
Distribution map of **barite** deposits of Iran (Khoshjou 1999)

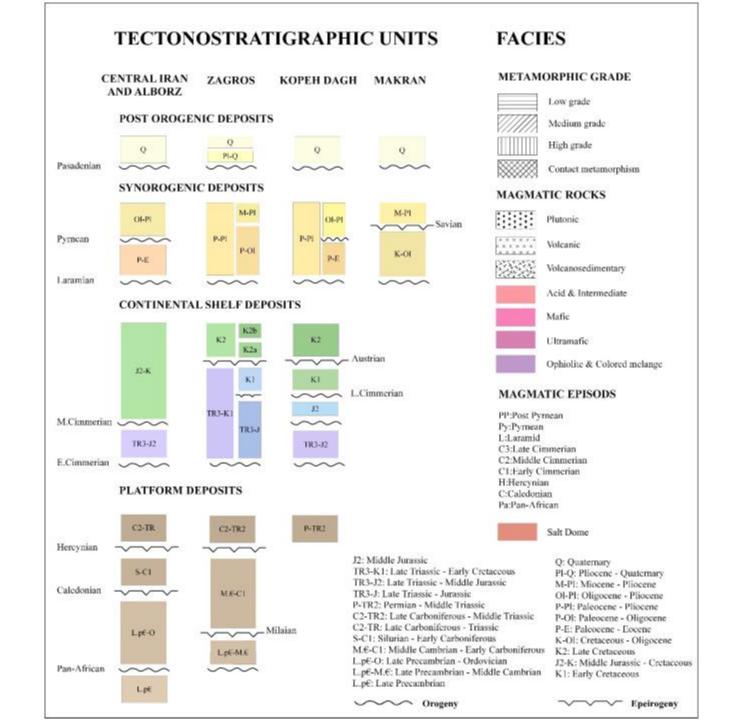
(1 Haft-har, 2 Darreh Kashan, 3 Ardekan, 4 Dorbid, 5
Niyook, 6 Dasht-e Deh, 7 Haji Abad, 8 Hoodeh, 9 Ghara
Gheytan, 10 Kamshacheh, 11 Tappeh-sorkh Bichegan, 12
Vavan, 13 Elite, 14 Lar, 15 Ahoorak Taleghen, 16
Seplark, 17 Chari-Abtorsh, 18 Garmab, 19 Chah Shirin,
20 Baghin, 21 Khaneh Hozeh-abad, 22 Tang-abad, 23
Jasb)

1- Esteghlal	12- Norooz-abad	23- Zonooz green clay	34- Nikooiyeh
2- Kavir 5	13- Sang-rud	24- Issti-soo	35- Ghazan-daghi
3- Kavir 16	14- Poshteh- Samirom	25- Maneshakeh	36- Shabolagh
4- Kavir 17	15- Dooplan refractory	26- Azar-goyooni kaolin	37- Kooshk-e Nosr
5- Vijeh	16- Baghe-siyah Gonabad	27- Abak	38- Parandak
6- Cheshmeh Shotoran	17- Kabootar-kuh kaolin	28- Gavazn	39- Tavakol-abad kaolin
7- Robat-khan	18- Makki Kashmar	29- Zajekan Qazvin	40- Hajib kaolin
8- Tabas ball clay	19- Abdullah Shahbaz	30- Qazvin	41- Kooshk clay
9- Chah-bid clay-like deposit	20- Robat Shah- abbasi	31- Abdol-abad	42- Shirin-goo
10- Chelpo Shahin- dezh	21- Zonooz	32- Ab-torsh kaolin	43- Shoorjehbolagh bidloo
11- Shahin-dezh	22- Blootlook Zonooz	33- Kaolin deposit near Alan Ghaya	44- Deposit near ghezeljeh
45- Ghooshe	56- Issti-soo yellow		
kaolin-alunite 46- Gandi	clay 57- Ghalandari ziling	ş	
47- Komboloo refractory	clay 58- Ahar mixed clay		
48- Darreh-jazin	59- Ahar white clay		
49- Kritoneh clay	60- Ghalandari-Ahar ziling clay		
50- Soorojin clay	61- Lalehjin clay		
51- Niyagh clay	62- Dasht-e Kalat		
52- Bibi-janloo clay	63- Brick clay Shileh		
53- Ab-garm Mahalt clay	64- Shahr-e Sookhtel clay	h	
54- Kondaj kaolin- clay	65- Varmal clay		
55- Gray clay	66- Ghasem-abad		
ee oray eag	oo- Ghasem-abad		

Kaolin

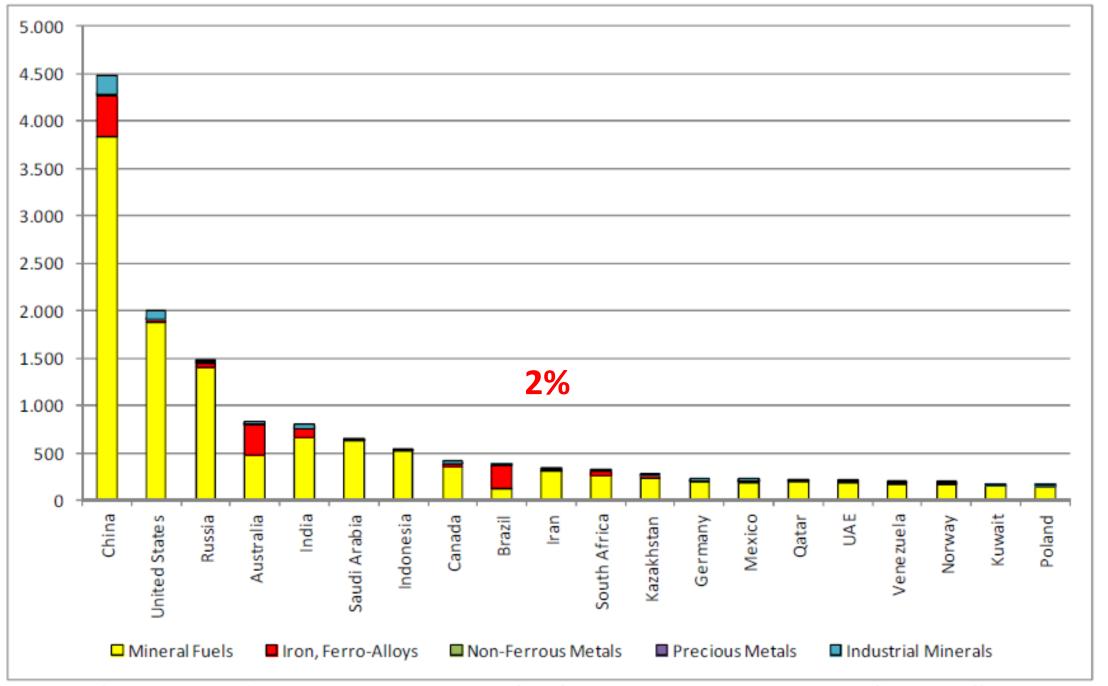
Rank 2012	Rank 2011	Country	Production 2012 metr. t	Share in %
1	(1)	United States	5 900 000	17,18
2	(2)	Germany	4 347 591	12,66
3	(5)	India	3 678 930	10,71
4	(3)	Czech Republic	3 318 000	9,66
5	(4)	China	3 300 000	9,61
6	(6)	Brazil	2 189 000	6,37
7	(8)	Korea, South	1 910 947	5,56
8	(7)	Ukraine	1 736 000	5,05
9	(10)	United Kingdom	1 150 000	3,35
10	(9)	Turkey	980 924	2,86
11	(11)	Iran	800 008	2,33
12	(12)	Vietnam	650 000	1,89
13	(24)	Mexico	514 730	1,50
14	(13)	Malaysia	438 923	1,28
15	(16)	Spain	332 000	0,97

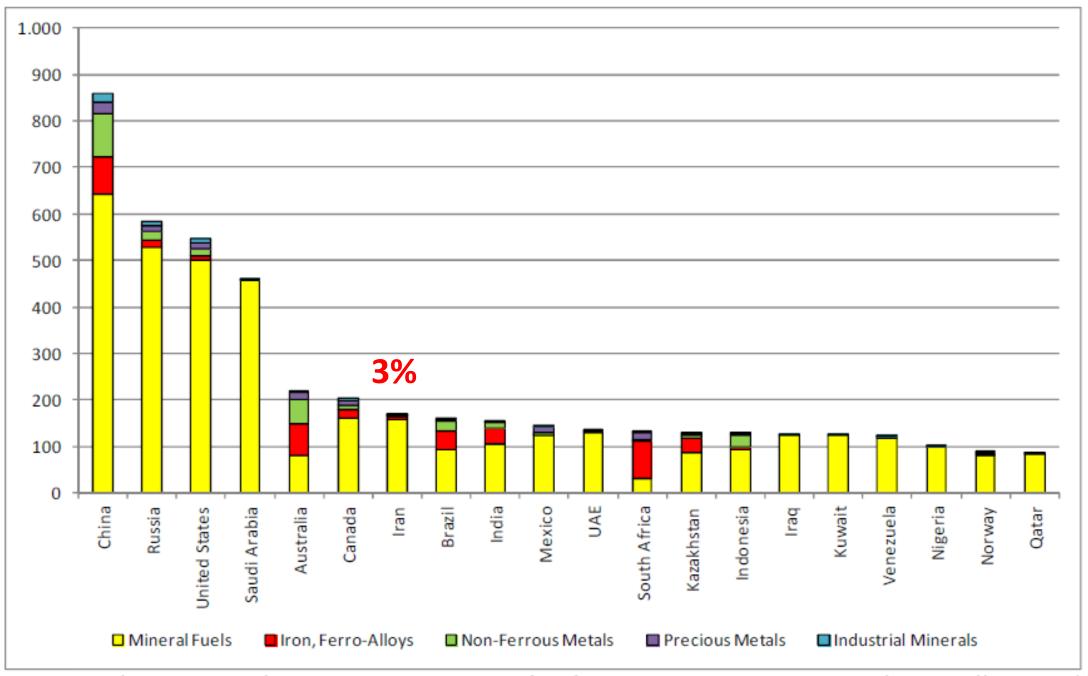

Distribution map of bentonite deposits of Iran


The primary mineral of all bentonites in Iran is montmorillonite. In most of these, bentonites minerals like cristobalite, quartz, and calcite are found as secondary minerals. It is interesting to note that in the bentonite deposits of Iran, montmorillonite and kaolinite minerals are not paragenetic. Evidences from mineralogical studies and fi eld observations indicate that wherever these two minerals are seen together, the minerals and the host rocks show stratiform structure, and the minerals are the result of erosion and sedimentation (they are not in situ) and do not form high-quality deposits.

Deposit name	Total	H_2O-	H_2O+	MgO	CaO	Al_2O_3	SiO ₂	$\rm FeO^+ Fe_2O_3$	K ₂ O	Na ₂ O
Goosh-mir	100.51	6.06	6.52	2.02	6.8	12.43	63	0.59	0.44	2.65
Hessami-ye Ferdows	101.54	4.3	14.37	2.52	9.81	12.66	50	1.88	3.67	2.33
Jahrom	100.77	9.38	8.02	5.24	1.61	21.04	53.06	1.13	1.29	0
Kheyr-abad-e Kerman	98.43	8.03	11.3	2.9	1.94	14.4	56.49	1.24	0.62	1.51
Khoshab-e Kashmar	100.6	12.81	11.6	2.67	10.57	14.34	41.6	4.95	0.28	1.78
Kilan	99.67	7.68	5.56	4.36	2.66	17.11	54.38	4.3	1.3	2.32
Mehrjan	99.97	5.19	4.41	2.67	1.54	15.09	66.79	1.69	0.26	2.33
Rashm	99.46	5.49	4.99	1.92	0.77	16.65	62.07	2.16	1.14	4.27
Siah Kuh	99.21	4.91	4.03	1.92	1.33	13.37	68.6	1.37	0.91	2.77
Soosan-var	89.67	3.1	5	1.11	2.03	10.04	62.53	1.2	1.13	3.53
Tafresh	98.87	9.46	6.31	3.75	1.47	18.85	53.09	3.2	1.3	1.44
Zarrin	99.45	3.76	8	1.81	6.66	14.24	55.9	3.74	1.31	4.03

Chemical composition of bentonite deposits of Iran




	•		•		•		•	
	Copper	Agate	Fluorite	Fire clay	Lithium	Tungsten-Tin	Mica	
	Lead-Zinc	Turquoise	Magnesite	Industrial clay	Halite	Nickel-Cobalt	Huntite	
	Chromium	Garnet	Coal	Kaolinite	Borate	Celestite	Bitumen	
	Gold	Molybdenum	Sulphur	Bestonite	lodine	Uranium	Shell	
	Barite	Talc-Asbestos	Perlite	Zeolite	Sulphate	Andalusite	Diatomite	
	tron	Manganese	Bauxite-Laterite	Alunite	Gypsum-Anhydrite	Mercury	Graphite	
	Phosphate	Realgar-Orpiment- Antimony	Silica	Feldspar	Potash	Titanium-Zirconium	Nitrate	
					280	1		
ndication	•	•	٠	•	•	•	•	
Small	•		•		•		•	
Medium	•		•		▼			
arge			•		▼			
	FAULTS		FOLDS		ROADS			

NON – METALLIC ORES

Oxysalts	2.1.1					
	Sulphates	Barite	Celestite	Alunite	Gypsum-Anhydrite	Fireclay
		Sulphate (i.g.)	constitu	. Hunito	Cypsum Annyune	rneenay
	Carbonates	N	TT	GL 11		
	Hydrous- Anhydrous Phosphates	Magnesite	Huntite	Shell		
		Apatite	Turquoise	Phosphate (i.g.)		
	Hydrous- Anhydrous Borates	Borates				
	Silicates	Borates				
		Mica	Bentonite	Kaolinite	Industrial clay (i.g.)	Andalusite
Halides		Feldspar	Zeolite	Talc-Asbestos	Perlite	
manues		Halite	Potash	Iod	Fluorite	
Nitrates		D. t				
Oxides		Potassium nitrate				
		Quartz-Silica	Agate	Diatomite	Bauxite-Laterite	
Organic materials		Coal	Bitumen			
(i.g): In general		Coa	Bitumen			

20 largest producer countries 2012 (without construction minerals, in Million metr. t)

20 largest producer countries 2012 (without construction minerals, in Billion US\$)

Metallic minerals	Nonmetallic minerals	Nonmetallic minerals	Building materials	Fossil fuel
Copper	Turquoise	Sepiolite	Building and decorative stone	Oil
Iron	Phosphate	Bitumen	Gypsum	Gas
Manganese	Salt	Orpiment	Rubble stone	Condensate
Chromite	Sulfur	Asbestos	Pumice	Coal
Gold	Sodium sulfate	Sylvite	Perlite	
Molybdenum	Kaolinite	Chalk	Pozzolan and pozzolanic tuff	
Lead	Bentonite	Vermiculite	Scoria	
Aluminum	Talc	Borax		
Antimony	Mica	Barite		
Arsenic	Feldspar	Magnesite		
Mercury	Silica	Celestite		
Silver	Fluorite	Garnet		
Polymetal	Alunite	Dolomite		
Pyrite	Nepheline syenite	Zeolite		
Uranium	Limestone	Diatomite		
Zinc	Ochre	Agate		
Tungsten	Fireclay	Bauxite		

Types of mineral deposits of Iran

Iran

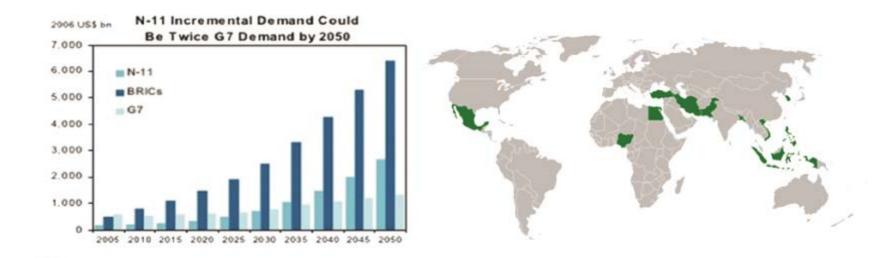
		2007	2008	2009	2010	2011	Change 07/11	Change 10/11
Iron	(t)	16 640 000	15 091 200	16 956 300	18 841 000	25 511 100	53,31	35,40
Chromium	(t)	59 770	115 670	109 705	91 064	140 000	134,23	53,74
Manganese	(t)	35 020	41 293	42 500	44 540	45 900	31,07	3,05
Molybdenum	(t)	2 500	3 600	3 800	6 683	3 700	48,00	-44,64
Aluminium	(t)	203 600	241 300	281 300	303 000	321 900	58,10	6,24
Antimony	(t)	0	0	0	600	600		0,00
Arsenic	(t)	100	100	100	100	100	0,00	0,00
Bauxite	(t)	500 000	520 000	322 800	714 801	700 000	40,00	-2,07
Copper	(t)	244 200	248 100	262 599	210 000	259 100	6,10	23,38
Lead	(t)	31 864	26 905	27 000	25 000	30 000	-5,85	20,00
Mercury	(t)	0	0	0	1 800	1 800		0,00
Zinc	(t)	75 000	86 000	115 000	200 000	130 000	73,33	-35,00
Gold	(kg)	850	850	850	850	400	-52,94	-52,94
Silver	(kg)	40 000	40 000	40 000	40 000	40 000	0,00	0,00

Iran

		2007	2008	2009	2010	2011	Change	Change
							07/11	10/11
Baryte	(t)	280 300	343 750	200 000	269 134	270 000	-3,67	0,32
Bentonite	(t)	180 000	356 989	376 000	542 935	545 000	202,78	0,38
Boron	(t)	1 603	1 150	1 000	1 060	1 000	-37,62	-5,66
Diatomite	(t)	1 500	9 600	2 000	3 000	3 000	100,00	0,00
Feldspar	(t)	512 261	501 821	502 000	533 117	540 000	5,42	1,29
Fluorspar	(t)	68 192	61 592	62 000	59 831	60 000	-12,01	0,28
Graphite	(t)	0	0	0	360	360		0,00
Gypsum	(t)	16 000 000	17 691 242	17 700 000	18 313 023	18 300 000	14,38	-0,07
Kaolin	(t)	700 000	945 758	907 487	761 530	762 000	8,86	0,06
Magnesite	(t)	112 229	115 087	130 575	173 530	170 000	51,48	-2,03
Perlite	(t)	30 000	40 307	47 000	19 168	20 000	-33,33	4,34
Phosphates	(t)	40 500	76 143	75 000	108 730	110 000	171,60	1,17
Salt	(t)	2 534 871	2 447 428	2 200 000	2 997 441	3 200 000	26,24	6,76
Sulfur	(t)	1 456 000	1 570 000	1 570 000	1 780 000	1 575 000	8,17	-11,52
Talc	(t)	91 000	90 000	66 383	62 672	63 000	-30,77	0,52
Vermiculite	(t)	0	0	0	1 200	1 200		0,00

Iran

		2007	2008	2009	2010	2011	Change 07/11	Change 10/11
Steam Coal	(t)	324 000	324 000	104 000	99 000	113 000	-65,12	14,14
Coking Coal	(t)	1 039 000	1 266 000	1 048 000	926 000	1 061 000	2,12	14,58
Nat. Gas (Mio r	n³)	111 900	116 300	131 200	146 200	151 800	35,66	3,83
Petroleum	(t)	209 600 000	213 000 000	204 000 000	207 100 000	205 800 000	-1,81	-0,63


(t) 340 283 551 348 255 076 352 072 590 371 150 360 381 178 800 Total

Some Highlights of Mineral reserve and production

- 10th largest Iron reserves
- First largest Gypsum reserves
- One of 10 countries with large copper, lead and zinc reserves
- 4th largest producer of Cement
- 10th largest producer of Steel
- One of 10 producers of Molybdenum, feldspar, Fluorspar, Lime, Dimensional stone, Barite

- Iran ranks 2th in the world in natural gas reserve and 4th in oil reserve
- Iran has the largest and most diverse manufacturing base in the Middle East
- Young educated people
- Large domestic market
- Developed infrastructure, telecommunications and energy
- 10th rank in tourism industry and ecotourism potential

New studies by Economic research groups identified N11, 11 economies that can be surpass the G7 in share of global growth. Iran was listed one of the N11 economies.

GDP prediction for 2050 (billions US\$)

	osition 2050	Country	2050	2040	2030	2020	2015
1		China	70.710	45.022	25.610	12.630	8.133
2	559	USA	38.514	29.823	22.817	17.978	16.194
3		India	37.668	16.510	6.683	2.848	1.900
4		Brazil	11.366	6.631	3.720	2.194	1.720
5	4	Mexico	9.340	5.471	3.068	1.742	1.327
6		Russia	8.580	6.320	4.265	2.554	1.900
7		Indonesia	7.010	3.286	1.479	752	562
8	•	Japan	6.677	6.042	5.814	5.224	4.861
9		Iran	5.945	3.085	1.673	994	716
10		United Kingdom	5.133	4.344	3.595	3.101	2.835

Some commodities production

Mineral	Production (000ton)
Iron Ore	50,000
Steel	17,000
Copper (cathode)	200
Lead	40
Zinc	105
Sulfur	1,900
feldspar	600
Fluorspar	70
Gypsum	13,000
Barite	270
Cement	75,000
Aluminum	350
Chromite	400
Gold	3 (ton)
Manganese (Mn content)	70

Some commodities reserve

Mineral	Reserve (million ton)
Iron Ore	2500
Copper	3000
Lead and Zinc ore	90
Gypsum	900

Thanks for your attention